Menú secundario

Scientific Papers in SCI


Solar pilot plant scale hydrogen generation by irradiation of Cu/TiO2 composites in presence of sacrificial electron donors

Maldonado, MI; Lopez-Martin, A; Colon, G; Peral, J; Martinez-Costa, JI; Malato, S
Applied Catalysis B-Environmental, 229 (2018) 15-23


A Cu/TiO2 photocatalyst has been synthesised by reducing a Cu precursor with NaBH4 onto the surface of a sulphate pretreated TiO2 obtained by a sol-gel procedure. The catalyst, that shows a clearly defined anatase phase with high crystallinity and relatively high surface area, and contains Cu2O and CuO deposits on its surface, has been used to produce hydrogen in a solar driven pilot plant scale photocatalytic reactor. Different electron donor aqueous solutions (methanol, glycerol, and a real municipal wastewater treatment plant influent) have been tested showing similar or even higher energy efficiency than those obtained using more expensive noble metal based photocatalytic systems. The glycerol solutions have provided the best reactive environments for hydrogen generation.

August, 2018 | DOI: 10.1016/j.apcatb.2018.02.005

Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts

Stroud, T; Smith, TJ; Le Sache, E; Santos, JL; Centeno, MA; Arellano-Garcia, H; Odriozola, JA; Reina, TR
Applied Catalysis B-Environmental, 224 (2018) 125-135


Carbon formation and sintering remain the main culprits regarding catalyst deactivation in the dry and bi-reforming of methane reactions (DRM and BRM, respectively). Nickel based catalysts (10 wt.%) supported on alumina (Al2O3) have shown no exception in this study, but can be improved by the addition of tin and ceria. The effect of two different Sn loadings on this base have been examined for the DRM reaction over 20 h, before selecting the most appropriate Sn/Ni ratio and promoting the alumina base with 20 wt.% of CeO2. This catalyst then underwent activity measurements over a range of temperatures and space velocities, before undergoing experimentation in BRM. It not only showed good levels of conversions for DRM, but exhibited stable conversions towards BRM, reaching an equilibrium H-2/CO product ratio in the process. In fact, this work reveals how multicomponent Ni catalysts can be effectively utilised to produce flexible syngas streams from CO2/CH4 mixtures as an efficient route for CO2 utilisation.

May, 2018 | DOI: 10.1016/j.apcatb.2017.10.047

Influence of gold particle size in Au/C catalysts for base-free oxidation of glucose

Megias-Sayago, C; Santos, JL; Ammari, F; Chenouf, M; Ivanova, S; Centeno, MA; Odriozola, JA
Catalysis Today, 306 (2018) 183-190


A series of gold colloids were prepared and immobilized on commercial activated carbon. The influence of the colloid preparation and stability were studied and related to the gold particle size in the final catalyst. The catalysts show an important activity in the glucose to gluconic acid oxidation reaction, leading to gluconic acid yield close to 90% in base free mild conditions (0.1 MPa O-2 and 40 degrees C). The size-activity correlation and probable mechanism were also discussed. Finally, the viability of the catalyst was tested by recycling it up to four times. 

May, 2018 | DOI: 10.1016/j.cattod.2017.01.007

Development of a novel TiNbTa material potentially suitable for bone replacement implants

Chicardi, E; Gutierrez-Gonzalez, CF; Sayagues, MJ; Garcia-Garrido, C
Materials & Design, 145 (2018) 88-96


A novel (beta + gamma)-TiNbTa alloy has been developed by a combined low energy mechanical alloying (LEMA) and pulsed electric current sintering process (PECS). Microstructurally, this material presents interesting characteristics, such as a submicrometric range of particle size, a body-centered phase (beta-TiNbTa) and, mainly, a novel face-centered cubic Ti-based alloy (gamma-TiNbTa) not previously reported. Related to mechanical performance, the novel (beta + gamma)-TiNbTa shows a lower E (49 +/- 3 GPa) and an outstanding yield strength (sigma(y) 1860 MPa). This combination of original microstructure and properties makes to the (beta + gamma)-TiNbTa a novel material potentially suitable as biomaterial to fabricate bone replacement implants, avoiding the undesirable and detrimental stressshielding problem and even the usual damage on the mechanical strength of Ti-based foams biomaterials. 

May, 2018 | DOI: 10.1016/j.matdes.2018.02.042

High-temperature compressive creep of novel fine-grained orthorhombic ZrO2 ceramics stabilized with 12 mol% Ta doping

Sponchia, G; Moshtaghioun, BM; Riello, P; Benedetti, A; Gomez-Garcia, D; Dominguez-Rodriguez, A; Ortiz, AL
Journal of the European Ceramic Society, 38 (2018) 2445-2448


A novel fine-grained orthorhombic ZrO2 ceramic stabilized with 12 mol% Ta doping was fabricated by spark plasma sintering from home-made powders, and its high-temperature mechanical properties evaluated for the first time by compressive creep tests in both Ar and air. It was found that the high-temperature plasticity of the ceramic deformed in Ar, under which the Ta-doped orthorhombic ZrO2 is a black suboxide with abundant oxygen vacancies in its crystal structure, is controlled by grain boundary sliding (stress exponent similar to 2, and activation energy similar to 780-800 kJ/mol). However, the high-temperature plasticity of the ceramic deformed in air, under which the Ta-doped orthorhombic ZrO2 is a white oxide due to the elimination in situ of oxygen vacancies, is controlled by recovery creep (stress exponent 3, and activation energy similar to 750 kJ/mol). It was also observed that black Ta-doped orthorhombic ZrO2 is more creep resistant than its white counterpart with the same grain size, and that the former deforms as the more conventional Y2O3-stabilized ZrO2 does.

May, 2018 | DOI: 10.1016/j.jeurceramsoc.2017.12.055

Effects of additives on the synthesis of TiCxN1-x by a solid-gas mechanically induced self-sustaining reaction

Chicardi, E; Gotor, FJ; Alcala, MD; Cordoba, JM
Ceramics International, 44 (2018) 7605-7610


The synthesis of TiCxN1-x from Ti/C mixtures in a N-2 atmosphere performed in a high-energy planetary mill was used as example to study the influence of the use of additives in mechanically induced self-sustaining reaction (MSR) processes. In particular, the effect of the addition of TiN, TiC, Si3N4 and SiC was analyzed. The self-sustaining reaction was extinguished when additive contents of 50, 40, 40 and 30 wt% for TiN, TiC, Si3N4 and SiC, respectively, were employed. These additives cannot be regarded as real inert since they served as an extra solid source for nitrogen and carbon, modifying the final stoichiometry of the TiCxN1-x phase. The adiabatic temperature (T-ad) determined for the mixtures with no MSR effect was well above the empirical limit value of 1800 K adopted as criterion for the occurrence of the self-propagating high-temperature synthesis (SHS) process. The ignition time (t(ig)) of the MSR process was practically invariant for low additive contents (approximately 50 min) and tended to increase up to maximum values of 85-95 min for the larger additive contents.

May, 2018 | DOI: 10.1016/j.ceramint.2018.01.179

Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries

Murcia, J.J., Hernández-Laverde, M., Rojas, Muñoz, E., Navío, J.A., Hidalgo, M.C.
Journal of Photochemistry and Photobiology A: Chemistry, 358 (2018) 256-264


The aim of the present work was to evaluate the effectiveness of flocculation-photocatalysis as combined processes in the treatment of dairy industries wastewater. Different commercial and lab prepared flocculants and photocatalysts were evaluated. All the materials prepared were extensively characterized. Commercial materials presented the best physicochemical properties and performance in the treatment of the studied wastewater. On one hand, all the photocatalysts evaluated showed bactericidal activity for E. Coli, total coliforms and other enterobacteriaceae. Total elimination of E. coli was obtained by using commercial TiO2 P25 Evonik, under 120 W/m2 of UV–vis light intensity and 5 h of total illumination time. Other species of bacteria remained after treatment under these conditions. It was also found that the highest light intensity of 120 W/m2 led to increase the Chemical Oxygen Demand and Total Organic Carbon in the samples treated, it can be due to the faster formation of new organic compounds as intermediaries during the photocatalytic reactions at the highest photonic flux. Flocculation pre-treatment of the wastewater samples led to improve the effectiveness of the photocatalytic treatment; thus, the combination of flocculation-photocatalysis treatments at low light intensity of 30 W/m2 leads to achieve the total elimination of E. coli, and under this intensity the elimination of total coliforms and other enterobacteriaceae increased 5.48% compared to the photocatalytic treatment alone. These treatment conditions led to comply the Colombian regulations for dairy wastewater.

May, 2018 | DOI: 10.1016/j.jphotochem.2018.03.034

Photo-induced processes on Nb2O5 synthesized by different procedures

Jaramillo-Pérez, C., Sánchez-Fernández, F.J., Navío, J.A., Hidalgo, M.C.
Journal of Photochemistry and Photobiology A: Chemistry, 359 (2018) 40-52


The properties of Nb2O5 strongly depend on its synthesis procedure as well as the conditions of ulterior thermal treatment. We report the synthesis of Nb2O5 powders prepared by sol-gel precipitation method using niobium(V) ethoxide as precursor. Two chemical routes were chosen: the presence of tryethyl amine (TEA) as precipitant/template agent, or the oxidant peroxide method. In addition, microwave-assisted activation was also used. The as-prepared samples by the above procedures were amorphous. Structural changes upon heating from room temperature up to 800 °C were investigated by X-ray powder diffraction technique combined with thermogravimetric analysis. The sequential thermal treatment up to 800 °C promotes the crystallization of hexagonal phase to orthorhombic phase whereas the ulterior cooling to room temperature lead to a mixture of both phases. Samples calcined at selected temperatures of either 600 °C or 800 °C for 2 h, were characterized by XRD, SEM, N2-adsorption and diffuse reflectance spectroscopy (DRS). The synthetic approach routes as well as the combined microwave activation followed by ulterior thermal treatment lead to changes not only on particle size but also on the textural properties of the synthesized catalysts. The catalysts synthesized have been evaluated using Rhodamine B (RhB) as a substrate, under both UV and visible lighting conditions. None of the catalysts synthesized showed activity in the visible. Under UV-illumination conditions, some of the catalysts exhibited a relatively low photoactivity in the degradation of RhB, which is associated with a photo-sensitizing effect. However, the addition of Ag+ ions considerably increased the activity of all the catalysts in the degradation of RhB under UV-illumination conditions. A mechanism is proposed to explain the photo-induced processes obtained, leaving the door open to the possible implications of the observed results in relation to the interaction of RhB dye with noble metal nanoparticles such as silver.

May, 2018 | DOI: 10.1016/j.jphotochem.2018.03.040

Thermal behaviour of sericite clays as precursors of mullite materials

Gonzalez-Miranda, FD; Garzon, E; Reca, J; Perez-Villarejo, L; Martinez-Martinez, S; Sanchez-Soto, PJ
Journal of Thermal Analysis and Calorimetry, 132 (2018) 967-977


Thermal analysis of some sericite clays, from several deposits in Spain, which are not exploited at this time, has been studied. The samples have been previously characterized by mineralogical and chemical analysis. Sericite clays have interesting properties, with implications in ceramics and advanced materials, in particular concerning the formation of mullite by heating. According to this investigation by differential thermal and thermogravimetric analysis (DTA-TG), the sericite clay samples can be classified as: Group (I), sericite-kaolinite clays, with high or medium sericite content, characterized by an endothermic DTA peak of dehydroxylation of kaolinite with mass loss, which overlapped with dehydroxylation of sericite, and Group (II), sericite-kaolinite-pyrophyllite clays, with broader endothermic DTA peaks, in which kaolinite is dehydroxylated first and later sericite and pyrophyllite with the main mass loss, appearing the peaks overlapped. X-ray diffraction analysis of the heated sericite clay samples evidenced the decomposition of dehydroxylated sericite and its disappearance at 1050 A degrees C, with formation of mullite, the progressive disappearance of quartz and the formation of amorphous glassy phase. The vitrification temperature is similar to 1250 A degrees C in all these samples, with slight variations in the temperatures of maximum apparent density (2.41-2.52 g mL(-1)) in the range 1200-1300 A degrees C. The fine-grained sericite content and the presence of some mineralogical components contribute to the formation of mullite and the increase in the glassy phase by heating. Mullite is the only crystalline phase detected at 1400 A degrees C with good crystallinity. SEM revealed the dense network of rod-shaped and elongated needle-like mullite crystals in the thermally treated samples. These characteristics are advantageous when sericite clays are applied as ceramic raw materials.

May, 2018 | DOI: 10.1007/s10973-018-7046-9

Electrophoretic deposition of mixed copper oxide/GO as cathode and N-doped GO as anode for electrochemical energy storage

Jafari, EA; Moradi, M; Hajati, S; Kiani, MA; Espinos, JP
Electrochimica Acta, 268 (2018) 392-402


In this work, energy storage properties of mixed copper oxide wrapped by reduced graphene oxide and nitrogen-doped reduced graphene oxide were investigated. First, co-electrophoretic deposition technique was used to coat GO@CuO on nickel foam; followed by electrochemical phase transformation to rGO@CuxO. Electron spectroscopy analyses (XPS, REELS and UPS) confirm the phase transformation and electrochemical reduction. Then, an electrophoretic deposition was carried out for coating nitrogen-doped graphene oxide on nickel foam coupled to its electrochemical reduction to the NrGO. The cathode and anode performances were studied by galvanostatic charge-discharge, cyclic voltammetry and impedance spectroscopy. The rGO@CuxO and NrGO exhibit a favorable specific capacity of 267.2 and 332.6 C g(-1) at 2 A g(-1), respectively. High electrochemical activity and elimination of polymer binders with a maximum potential of 1.6 V are among the advantages of rGO@CuxO//NrGO electrochemical charge storage device. Furthermore, fabricated device provided a maximum specific power and specific energy of 11917.24 W kg(-1) and 14.15 Wh kg(-1), respectively, with 86% capacity retention after 2000 cycles.

April, 2018 | DOI: 10.1016/j.electacta.2018.02.122

Is an alumina-whisker-reinforced alumina composite the most efficient choice for an oxidation-resistant high-temperature ceramic?

Tamura, Y; Moshtaghioun, BM; Zapata-Solvas, E; Gomez-Garcia, D; Dominguez-Rodriguez, A; Cerecedo-Fernandez, C; Valcarcel-Juarez, V
Journal of the European Ceramic Society, 38 (2018) 1812-1818


The search of a competitive ceramic material for structural applications demands several requisites: a simple microstructure with easy reproducibility, good intrinsic mechanical properties and most of all, an optimal oxidation resistance. This later point is a challenging point for most ultrahigh refractory materials. 
In this work an alumina (Al2O3) whisker-reinforced Al2O3 composite prepared by spark plasma sintering (SPS) is studied. It will be shown that, although the microstructure is quite similar to that of pure monolithic one, there is a notorious enhancement of the high-temperature deformation resistance, reaching up to one order of magnitude over the pure Al2O3 specimen. On the other hand, the activation energy of these composites increases notably. The results are explained in terms of an original model. A comparison with reported data shows that such composite is as efficient as a SiC-whisker-reinforced Al2O3 composite, with the advantage of its oxidation resistance and much less fabrication cost.

April, 2018 | DOI: 10.1016/j.jeurceramsoc.2017.10.006

Spark plasma sintering of titanium nitride in nitrogen: Does it affect the sinterability and the mechanical properties?

Moshtaghioun, BM; Gomez-Garcia, D; Dominguez-Rodriguez, A
Journal of the European Ceramic Society, 38 (2018) 1190-1196


Titanium nitride ceramics have an intrinsic interest due to its optical and structural applications. However, the conditions for sintering of dense pieces are not still clarified. This research work is focused on the spark plasma sintering (SPS) of near-fully dense fine-grained TiN. The main goal is giving a response to a longstanding debate: can the external atmosphere favor sintering? Different sintering atmospheres, either vacuum or a nitrogen flow, have been used during SPS heating to this purpose. X ray diffraction analysis has showed the presence of TiN as the main phase with traces of Ti4O7 in optimal SPS conditions (1600 °C, one minute dwell time). Our results show that the use of a nitrogen flow while heating can improve sinterability very slightly, but mechanical properties are essentially unaltered within the experimental uncertainty. The hardness reaches values as high as 20GPa whereas fracture toughness can be evaluated around 4 MPam1/2.

April, 2018 | DOI: 10.1016/j.jeurceramsoc.2017.12.029

Synthesis of vaterite CaCO3 as submicron and nanosized particles using inorganic precursors and sucrose in aqueous medium

Perez-Villarejo, L; Takabait, F; Mahtout, L; Carrasco-Hurtado, B; Eliche-Quesada, D; Sanchez-Soto, PJ
Ceramics International, 44 (2018) 5291-5296


It is reported the synthesis of CaCO3 vaterite as stable nanoparticles and submicron-sized by a simple and relatively rapid procedure. XRD, SEM and FTIR techniques have been used to characterize the precipitated products. The synthesis is based on chemical precipitation of inorganic salt precursors, calcium nitrate tetra hydrate and sodium bicarbonate, and using the disaccharide sucrose as an additive in aqueous medium. The role of the disaccharide sucrose is to control the vaterite precipitation after nucleation and growth. It has been found that an increase in sugar concentration promotes the crystal precipitation of vaterite with spherulitic morphology, as revealed by SEM, and changed the surface of the precipitated particles. There is a significant difference between CaCO3 precipitation in the absence and presence of sucrose. Addition of 0% of sucrose leads to 83% of calcite as identified by XRD methods. In contrast, addition of 67% of sucrose in aqueous medium produces 100% vaterite. The present results may be useful to provide a quick, simple, inexpensive and novel method for the controlled synthesis of new advanced biomaterials based on vaterite particles without hazardous chemicals and inert atmosphere, with great possibilities for industrial scale production.

April, 2018 | DOI: 10.1016/j.ceramint.2017.12.142

Self-propagating mechanosynthesis of HfB2 nanoparticles by a magnesiothermic reaction

Jalaly, M; Gotor, FJ; Sayagues, MJ
Journal of the American Ceramic Society, 101 (2018) 1412-1419


A mechanically induced self-sustaining reaction (MSR) was used to synthesize hafnium diboride nanoparticles. Along this route, magnesium was selected as a robust reducing agent for co-reduction in boron and hafnium oxides in a combustive manner. Combustion occurred after a short milling period of 12 minutes. The hafnium diboride nanoparticles had a polygonal faceted morphology and were 50-250 nm in diameter. The assessment of the processing mechanism revealed that the initial combustive reduction in B2O3 to elemental B by Mg was the major step for progressing the overall reaction. After that, HfO2 can be reduced to elemental Hf, followed by the synthesis of HfB2 phase.

April, 2018 | DOI: 10.1111/jace.15297

Silver-modified ZnO highly UV-photoactive

Jaramillo-Páez, C.; Navío, J.C.; Hidalgo, M.C.
Journal of Photochemistry and Photobiology A: Chemistry, 356 (2018) 112-122


ZnO nanoparticles were successfully synthesized by a controlled precipitation procedure by mixing aqueous solutions of Zn(II) acetate and dissolved Na2CO3 at pH ca. 7.0 without template addition and ulterior calcination at 400 °C for 2 h. The Ag-ZnO catalysts (ranging from 0.5 to 10 Ag wt.-%) were obtained by photochemical deposition method at the surface of the prepared ZnO sample, using AgNO3 as precursor. The as-prepared catalysts (with and without silver) were characterized by XRD, BET, FE-SEM, TEM, and XPS and diffuse reflectance spectroscopy (DRS). The effect of Ag-phodeposition on the photocatalytic properties of ZnO nanoparticles was investigated. Three different probe molecules were used to evaluate the photocatalytic properties under UV-illumination and visible illumination: Methyl Orange and Rhodamine B were chosen as hazardous dyes and Phenol as a transparent substrate. For each of the chosen substrates, it was observed that the UV-photocatalytic properties of ZnO improved with the amount of Ag deposited, up to an optimum percentage around 1–5 wt.-% Ag, being even better than the commercial Evonik-TiO2(P25) in the same conditions. Above this amount, the UV-photocatalytic properties of the Ag-ZnO samples remain unchanged, indicating a maximum for Ag-deposition. While ZnO and Ag-ZnO catalysts can photodegrade Rhodamine B, Methyl Orange and Phenol totally within 60 min under UV-illumination, the process is slightly faster for the case of Ag–ZnO nanoparticles. Under Vis-illumination, the silver-metalized samples did not present photocatalytic activity in the degradation of Methyl Orange. However, a very low photoactivity was present for phenol degradation (10% conversion) and a moderate conversion of ca. 70% for Rhodamine B degradation, after 120 min of Visible-illumination. High conversion values and a total organic carbon (TOC) removal of 86–97% were obtained over the Ag-ZnO photocatalysts after 120 min of UV-illumination, suggesting that these Ag-modified ZnO nanoparticles may have good applications in wastewater treatment, due to its reuse properties.

April, 2018 | DOI: 10.1016/j.jphotochem.2017.12.044

Colorimetric energy sensitive scintillator detectors based on luminescent multilayer designs

Ferrer, FJ; Gil-Rostra, J; Gonzalez-Elipe, AR; Yubero, F
Sensors and Actuators A-Physical, 272 (2018) 217-222


In this work we present a new concept for energy sensitive radiation-beam scintillator detectors based on a luminescent multilayer design, where each layer within the stack consists of a rare-earth-doped highly transparent oxide. For a given type of particle beam (i.e., protons, a particles, etc.), its penetration depth, and therefore its energy loss at a particular buried layer, depends on its initial kinetic energy. Relying on this principle and since the intensity of the luminescent response of each layer and substrate should be proportional to the energy deposited by the radiation beam, we prove that a characteristic energy dependent color emission is obtained depending on both the phosphors integrated in the luminescent stack and on the primary energy and type of particle beam. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters to achieve a broad gamut in colorimetric response. The developed scintillators are designed to operate in a transmission geometry (light detection from the opposite side of the incident radiation) which is well suited for high energy particle detection in fields such as oncotherapy, space radiation, or of fusion studies. The principles of the method are illustrated with a case example typical of ion beam accelerators devoted to materials analysis. It is obtained that the kinetic energy of protons/alpha particle beams can be distinguished and evaluated with a sensitivity of 0.06/0.25 chromaticity units per MeV in the 0.7-2.0 MeV range. 

April, 2018 | DOI: 10.1016/j.sna.2018.01.062

Tailoring structured WGS catalysts: Impact of multilayered concept on the water surface interactions

Gonzalez-Castano, M; Le Sache, E; Ivanova, S; Romero-Sarria, F; Centeno, MA; Odriozola, JA
Applied Catalysis B-Environmental, 222 (2018) 124-132


A novel multilayer approach for designing structured WGS catalyst is employed in this study as a response to the lack of new strategies in the literature. The approach proposes the use of two successive layers with different functionalities on metallic micromonolith substrate. The WGS catalyst behavior is modulated by the nature of the inner layer which determines the active species surface population by acting on the water activation step. The catalytic promotion attained by introducing inner ceria containing solids with increasing number of oxygen defects is intensely analyzed through FT-IR and H2O-TPD. Several evidences about the participation of the oxygen vacancies, as key sites, for water absorption processes are established. Besides, remarkable relationships between the water absorption strengths and the water splitting processes within their influence on the catalyst performance are also discussed.

March, 2018 | DOI: 10.1016/j.apcatb.2017.10.018

Epimerization of glucose over ionic liquid/phosphomolybdate hybrids: structure-activity relationship

Megias-Sayago, C; Alvarez, E; Ivanova, S; Odriozola, JA
Green Chemistry, 20 (2018) 1042-1049


The influence of the crystal structure and chemical nature of some ionic liquid/phosphomolybdate hybrids on their catalytic activity in the epimerization of glucose was studied. A clear evidence of structure-activity relationship was found. The inorganic part of the hybrid ensured the availability of active sites for the reaction, while the organic cation part organized the structure and controled the diffusion of the reactants. This study can be used as a first approach to predict the symmetry, long range order and availability of active sites in the presented class of imidazolium based polyoxometalate hybrids.

March, 2018 | DOI: 10.1039/c7gc03738d

Robust polarization active nanostructured 1D Bragg Microcavities as optofluidic label-free refractive index sensor

Oliva-Ramirez, M; Gil-Rostra, J; Yubero, F; Gonzalez-Elipe, AR
Sensors and Actuators B-Chemical, 256 (2018) 590-599


In this work we report the use of polarization active porous 1D Bragg microcavities (BM) prepared by physical vapor deposition at oblique angles for the optofluidic analysis of liquid solutions. These photonic structures consist of a series of stacked highly porous layers of two materials with different refractive indices and high birefringence. Their operational principle implies filling the pores with the analyzed liquid while monitoring with linearly polarized light the associated changes in optical response as a function of the solution refractive index. The response of both polarization active and inactive BMs as optofluidic sensors for the determination of glucose concentration in water solutions has been systematically compared. Different methods of detection, including monitoring the BM wave retarder behavior, are critically compared for both low and high glucose concentrations. Data are taken in transmission and reflection modes and different options explored to prove the incorporation of these nanostructured transducers into microfluidic systems and/or onto the tip of an optical fiber. This analysis has proven the advantages of the polarization active transducer sensors for the optofluidic analysis of liquids and their robustness even in the presence of light source instabilities or misalignments of the optical system used for detection.

March, 2018 | DOI: 10.1016/j.snb.2017.10.060

Synthesis of Pd-Al/biomorphic carbon catalysts using cellulose as carbon precursor

Cazana, F; Galetti, A; Meyer, C; Sebastian, V; Centeno, MA; Romeo, E; Monzon, A
Catalysis Today, 301 (2018) 226-238


This work presents the results obtained with novel Pd and Pd-Al catalysts supported on carbon, which have been prepared using a biomorphic mineralization technique. The catalyst synthesis procedure includes a stage of thermal decomposition under reductive atmosphere of cellulose previously impregnated with the metallic precursors. We have studied the influence of the temperature and time of decomposition, and of the Al precursor addition, on the textural and catalytic properties. The characterisation results indicate that the preparation method used leads to the formation of carbonaceous supports with a high microporosity (up to 97% micropore volume) and values of the BET surface up to 470 m2/g while maintaining the original external structure. The use of low temperatures (ca. 600 °C) during the decomposition step allows the preparation of highly dispersed catalysts with narrow Pd particle size distributions. However, the thermal decomposition at elevated temperatures (ca. 800 °C) increases the Pd particle size due to the sintering of the metallic phase. This phenomenon is augmented with the decomposition time and is not affected by the presence of Al. Consequently, the catalytic activity of these materials in cyclohexene hydrogenation is strongly affected by the operational conditions used during the thermal decomposition step. Unexpectedly, the more sintered catalysts, i.e. those prepared at 800 °C, show the highest activity. According to the characterization results, this fact can be explained considering that the smaller Pd particles obtained after preparation at e.g. 600 °C are quite inactive because they are confined in the internal structure of the micropores of the support and/or embedded inside the carbon matrix. In contrast, after decomposition at 800 °C, the larger Pd particles formed are placed at the external surface of the catalyst, being accessible to the reactants. In addition, for the specific conditions under which the Pd is accessible, the presence of Al favours the cyclohexene conversion due to the enhancement of the adsorption on the Pd surface as a consequence of a charge transfer phenomenon. These results can serve as a guideline for the preparation of these catalysts based on raw lignocellulosic materials in order to maximize their catalytic performance.

March, 2018 | DOI: 10.1016/j.cattod.2017.05.026