Menú secundario

Proyectos de Investigación

Estudio del mecanismo de adsorción de contaminantes aniónicos peligrosos por aluminosilicatos de diseño



Investigador Principal: Esperanza Pavón González
Periodo: 01-02-2015 / 28-02-2017
Organismo Financiador: Junta de Andalucía
Código: TAHUB-082. Programa Talent HUB
Componentes:

Resumen [+]

El desarrollo científico, tecnológico e industrial en la últimas décadas del siglo pasado ha causado un incremento en la contaminación del medio ambiente. Debido a ello, la comunidad internacional reconoce la necesidad de desarrollar nuevas tecnologías y estrategias para el control de la contaminación. El objective principal de este Proyecto cumple con este propósito: el diseño de silicatos laminares expansibles de alta carga y su posterior modificación superficial para que se conviertan en materiales adecuados para la retención e inmobilización de contaminantes tóxicos aniónicos.
La metodología del Proyecto se basas en la síntesis de micas de alta carga expansibles con sustituciones isomórficas de Si+4 por Al+3 y con una densidad de carga en el rango de las micas frágiles pero con una capacidad de intercambio e hinchamiento inusuales en estos materiales. Para potenciar su capacidad de adsorción, la superficie de estos materiales se funcionalizará con magnetica por un lado y con la inclusion de cationes de alquilamonio, por otro.
Además, se establecerá un protocolo de inmobilizacion de productos aniónicos altamente tóxicos como son AsO42-, SO42-, en función de la estructura y la funcionalización de las micas de alta carga expansibles. Más tarde, la aplicabilidad de estas reacciones de adsorción se comprobará en suelos reales contaminados de Chile y España.


Almacenamiento TErmoQuímico Híbrido de energía SOLAR concentrada SOLARTEQH



Investigador Principal: Luis Allan Pérez Maqueda
Periodo: 01-01-2015 / 31-12-2017
Organismo Financiador: Ministerio de Economía y Competitividad
Código: CTQ2014-52763-C2-1-R
Componentes: María Jesús Diánez Millán, José Manuel Criado Luque

Resumen [+]

Actualmente existen proyectos dentro de los prgramas Sunshot (USA) y FP7 (UE) en los que se analiza la viabilidad de lechos fluidizados de sólidos granulados para el almacenamiento químico de energía solar concentrada. Uno de los materiales considerados es la caliza natural (CaCO3), abundante y barata. Usando una mezcla CO2/aire en  porcentajes relativos adecuados a las temperaturas de trabajo (600ºC-900ºC) se descarbonataría el CaCO3 mediante reacción endotérmica en períodos de elevada irradiación o se  carbonataría el CaO liberando calor cuando la temperatura descendiese por debajo de un cierto valor. Mediante la variación del %CO2 en el gas de fluidización se provocarían las reacciones de descarbonatación-carbonatación según se desee reducir o aumentar la temperatura del lecho en función de la intensidad de radiación solar y de la demanda. Este control ayudaría a paliar el efecto de la variabilidad de la intensidad de radiación solar sobre la transferencia de calor al ciclo de vapor para la producción de corriente eléctrica. Además de tratarse de un almacenamiento de energía sin pérdidas, la densidad energética del CaCO3 (~1 MWhr/m3) es mayor que la de las sales fundidas actualmente empleadas en plantas comerciales (0.25-0.40 MWhr/m3), siendo además la caliza un material no corrosivo, no degradable y que permitiría operar a mayores temperaturas y aumentar así la eficiencia de conversión termoeléctrica. No obstante, la fluidización de la caliza es altamente heterogénea, formándose canales de gas y agregados no fluidizables en el lecho que reducirían en gran medida la transferencia térmica, la eficacia de contacto sólido/gas y por tanto el grado de conversión. Por otra parte, se han puesto en marcha plantas piloto basadas en almacenamiento térmico en lechos fluidizados de sólidos granulados inertes de alta capacidad calorífica como la arena o el carburo de silicio que presentan un estado de fluidización uniforme con alta transferencia térmica. Estos sistemas poseen inevitables pérdidas térmicas y son necesarios grandes volúmenes para garantizar el suministro de calor al ciclo de vapor en períodos de baja radiación. Nuestro proyecto se basa en complementar de manera sinérgica las ventajas del almacenamiento térmico en lechos fluidizados de sólidos inertes con el químico mediante lechos fluidizados de mezclas de sólidos inertes fluidizables con otros basados en CaO (arena y caliza naturales por ejemplo). En nuestro trabajo evaluaremos la transferencia y almacenamiento de energía solar concentrada de estos sistemas híbridos. El plan de trabajo contemplará acotar las condiciones óptimas de concentración de CO2 en el gas de fluidización y proporción de arena/caliza en función de la temperatura para las que la eficacia de almacenamiento se viera optimizada. Estudiaremos las propiedades físicas y químicas de mezclas de arena/caliza y los parámetros físicos que favorezcan la transferencia y almacenamiento de calor en función de la intensidad de la radiación solar. Así mismo se explorarán métodos de estabilización térmica del CaO con el objeto de incrementar la reversibilidad de carbonatación/calcinación en condiciones prácticas. De manera paralela se desarrollará un modelo termodinámico que incluya aquellos procesos que afectan a la eficiencia energética del mismo y sirva para establecer parámetros óptimos de operación con el objetivo final de transferencia al sector tecnológico para lo que se contará con el apoyo de Abengoa Solar.


Desarrollo de cermets con aleaciones de alta entropía de mezcla como fase ligante para aplicaciones de mecanizado



Investigador Principal: Francisco José Gotor Martínez
Periodo: 01-01-2015 / 31-12-2017
Organismo Financiador: Ministerio de Economía y Competitividad
Código: MAT2014-52407-R
Componentes: José Manuel Córdoba Gallego, María Dolores Alcalá González, Pedro José Sánchez Soto, Concepción Real Pérez, María Jesús Sayagués de Vega

Resumen [+]

El mecanizado es parte esencial de los procesos de fabricación empleados en muchos sectores industriales y posee una importante implicación económica, al representar una proporción significativa del coste total de fabricación. El éxito del mecanizado depende de múltiples factores, entre los que destaca la herramienta de corte utilizada. El mecanizado de alta velocidad y de los materiales denominados difíciles de mecanizar, como las superaleaciones empleadas en la fabricación de motores a reacción, imponen unas condiciones extremas de trabajo caracterizadas por altas temperaturas, presiones y tensiones, que pueden provocar el fallo prematuro en servicio de la herramienta de corte. Además, el deterioro de la herramienta, debido a un excesivo desgaste y deformación, hace que resulte difícil mantener las tolerancias y la integridad de la superficie mecanizada, lo que compromete seriamente las propiedades de fatiga de la pieza y, por tanto, su aplicabilidad y vida útil. La importante implicación económica de este tipo de mecanizados hace que la industria europea se haya marcado como objetivo primordial mejorar la productividad de estos procesos e incrementar su precisión y calidad, promoviendo la búsqueda de nuevos materiales para herramienta que se adapten mejor a estos nuevos requerimientos.
De los materiales para herramienta que se emplean en la actualidad, los cermets son los que mejor se adaptarían a las exigencias de estos mecanizados, ya que poseen una alta resistencia al desgaste, una estabilidad química elevada y una resistencia mecánica que se mantiene a alta temperatura. Pero, sería necesario mejorar ostensiblemente la tenacidad de fractura y la tolerancia al daño hasta valores próximos a los que presentan los carburos cementados. Durante los últimos años se ha producido un continuado proceso de optimización de los cermets, modificando principalmente la microestructura y la composición química de las fases cerámicas empleadas. En el proyecto MAT2011-22981 demostramos que los cermets denominados de solución sólida completa, caracterizados por poseer una única fase cerámica homogénea formada por un carbonitruro complejo, permiten alcanzar una buena combinación de dureza y tenacidad y una alta resistencia a la oxidación.
En el presente proyecto, que puede considerarse como complementario al MAT2011-22981, se pretende mejorar aún más las propiedades de los cermets, pero actuando en este caso sobre la fase ligante, que es en última instancia la principal causante de la cohesión y la tenacidad del material. Las aleaciones de alta entropía de mezcla se postulan como candidatas idóneas para sustituir a las fases ligantes actuales, ya que presentan una alta resistencia, una buena ductilidad y un excelente comportamiento mecánico a elevadas temperaturas. El objetivo general del presente proyecto se centra en el desarrollo de cermets de solución sólida completa con una fase metálica ligante formada por aleaciones de alta entropía de mezcla. Los materiales que se desarrollarán poseerán una microestructura sencilla, similar a la que presentan los actuales carburos cementados, pero con una elevada complejidad composicional, ya que ambas fases constituyentes (cerámica y metálica) serán soluciones sólidas con un número importante de componentes, al menos cinco. Con estos nuevos cermets, se pretenden mantener las propiedades óptimas que presentan actualmente y mejorar aquellas que limitan su uso potencial en los mecanizados más exigentes.


Desarrollo de procesos catalíticos y fotocatalíticos para la valorización del gas natural: activación y transformación de metano e hidrocarburos ligeros



Investigador Principal: Alfonso Caballero Martínez
Periodo: 1-01-2015 / 31-12-2017
Organismo Financiador: Ministerio de Economía y Competitividad
Código: CTQ2014-60524-R
Componentes: Juan Pedro Holgado Vázquez, Gerardo Colon Ibáñez, Rosa María Pereñiguez Rodríguez, Alberto Rodríguez Gómez

Resumen [+]

  En el presente proyecto se pretenden realizar diversos estudios y desarrollos relacionados con distintos procesos de activación y transformación de metano en moléculas de más valor añadido. Con este fin se estudiarán tanto procesos bien establecidos de conversión indirecta, a través de reacciones de reformado (RM) para la obtención de gas de síntesis, como distintos procesos de conversión directa, en concreto la oxidación directa a metanol (DOM) y la aromatización de metano (DAM).

    En lo que respecta a la reacción de reformado, se plantea el desarrollo de sistemas catalíticos con resistencia mejorada a los procesos de desactivación. Para ello se prepararán y caracterizarán nuevos catalizadores bimetálicos nanoestructurados de niquel depositados en soportes como ceria, alumina y alumina/ceria, así como soportes mesoporosos de tipo SBA-15, dopados con ceria y alumina. Como segundo metal se utlizarán cobalto o hierro. Paralelamente, se realizará un estudio de la reacción de reformado por vía fotocatalítica utilizando sistemas de Cu, Pt y Ni depositados en soportes activos clásicos como titania o ceria, así como otros de más reciente desarrollo, como son Ga2O3, nitruro de carbono o grafeno. En este caso, se pretende igualmente explorar las posibilidades de la activación fotoquímica para la reacción de oxidación preferencial de CO (foto-PROX) en presencia de hidrógeno, de utilidad en los procesos de purificación de hidrógeno procedente del gas de síntesis. Se incidirá en la preparación de sistemas con una estructura de de bandas apropiada para el control de esta oxidación selectiva de CO.

     En cuanto a los procesos de conversion directa, se estudiará la reacción de DOM usando O2, H2O2 o N2O como activadores de la reacción, en combinación con sistemas basados en Au/Pd, Fe, Cu y/o Ni depositados en soportes como zeolitas ZSM-5, grafeno y TiO2. En este último caso, utilizando Au/Pd como fase metálica activa en presencia de H2O2 como especie oxidante se planteará la posibilidad de combinar la síntesis in situ de agua oxigenada con la posterior oxidación directa de metano. Igualmente, se explorará el proceso de oxidación fotocatalítica de metano a metanol como una alternativa novedosa y altamente atractiva. En este caso, el uso de nuevos fotocatalizadores de oxidación como el BiVO4 así como la presencia de mediadores redox permitirán controlar la oxidación selectiva a metanol.

    Algunos sistemas estrechamente relacionados con los anteriores, y en particular los basados en Mo soportados en zeolitas ZSM-5 y MCM-22, se utilizarán para el estudio de la reacción de aromatización de metano. La proporción de aluminio, el porcentaje de molibdeno y su activación en la estructura microporosa del soporte, así como la adición de promotores como Ga, Tl o Pb serán algunas de las variables a optimizar para esta reacción. De forma paralela se podrá estudiar el proceso de aromatización fotoinducido, recientemente descrito por algunos autores.


Materiales Ópticos Avanzados para Dispositivos Optoelectrónicos más Eficientes



Investigador Principal: Hernán Míguez García / Manuel Ocaña Jurado
Periodo: 1-01-2015 / 31-12-2017
Organismo Financiador: Ministerio de Economía y Competitividad
Código: MAT2014-54852-R
Componentes: Ana Isabel Becerro Nieto, Nuria Núñez Alvarez, Mauricio E. Calvo Roggiani, Gabriel Lozano Barbero, Juan Francisco Galisteo López, Miguel Anaya Martin

Resumen [+]

El proyecto MODO se centrará en el desarrollo de materiales ópticos que optimicen el funcionamiento de dispositivos optoelectrónicos tales como celdas fotovoltaicas o dispositivos emisores de luz, mejorando así su eficiencia de conversión enérgetica. El objetivo principal de esta propuesta es aumentar este rendimiento a través del control de los procesos de absorción y emisión de luz que tienen lugar en los materiales que forman estos dispositivos. Esto se logrará mediante el diseño e integración de nanoestructuras fotónicas cuyas propiedades sean, además, compatibles con los requisitos generales de fabricación y funcionamiento de estos sistemas, tales como estabilidad térmica, química y mecánica, durabilidad, procesado fácil o escalado.

En anteriores proyectos, el grupo dedicó sus esfuerzos a la realización de estudios de carácter fundamental y aplicado en los campos de diseño, preparación y caracterización de materiales ópticos, así como a la demostración experimental de la viabilidad de la integración de estos materiales en celdas solares para aumentar su eficiencia. Este proyecto tiene como meta ampliar el rango de dispositivos cuyo funcionamiento puede mejorar mediante la inclusión de estructuras que permitan controlar sus propiedades ópticas. El proyecto MODO tiene, por tanto, un marcado carácter tecnológico y pretende poner en práctica el conocimiento adquirido por el grupo solicitante durante los últimos años para mejorar el rendimiento de dispositivos optoelectrónicos de distinto tipo. Por un lado, se continuará investigando en nuevas estructuras fotónicas que otorguen alta eficiencia y más versatilidad y adaptabilidad a celdas solares de tercera generación basadas en colorantes, con énfasis en nuevos diseños que incrementen su funcionalidad. Proponemos además integrar estructuras fotónicas en celdas de perovskita de tipo haluro metal-orgánico, que acaparan la atención de investigadores y tecnólogos y para las cuales no se han realizado aún diseños ópticos específicos, con el objetivo de aumentar la recolección de luz en el rango espectral en que la celda absorbe menos y modificar su color controladamente.

Al mismo tiempo, se busca extender los conceptos estudiados previamente al campo de la iluminación para conseguir dispositivos en los que se pueda obtener un control fino de las propiedades fotocromáticas y direccionales de la luz emitida, mejorándose sus prestaciones y su eficiencia energética, aún lejos de lograrse con la tecnología actual. En este ámbito, creemos que la integración de estructuras ópticas puede permitir alcanzar el objetivo largamente perseguido de adecuar la curva espectral de emisión a la curva de percepción del ojo humano, maximizándose así el rendimiento energético del dispositivo, ya que toda aquella radiación que se emita para no ser detectada por el ojo supone una pérdida de eficiencia.

La propuesta se enmarca dentro del Reto Social denominado "Energía segura, eficiente y limpia" y tiene como objetivo desarrollar tecnología fotónica empleando herramientas de la nanotecnología y del campo de materiales avanzados, todas ellas identificadas como Tecnologías Facilitadoras Esenciales en el programa de H2020 e incluidas en la Estrategia Española de Ciencia y Tecnología.


Nanogeneradores ferroeléctricos basados en polímeros para aplicaciones en generación de energía y sensores



Investigador Principal: Pedro E. Sánchez Jiménez
Periodo: 01-10-2014 / 30-09-2016
Organismo Financiador: Junta de Andalucia
Código: TAPOST-134. Programa Talent HUB
Componentes:

Resumen [+]

La generación de energía a partir de fuentes ambientales ha generado un enorme interés pues ofrece una slución energética para aplicaciones de bajo consumo tales como sensores inalámbricos, dispositivos portátiles, implantes biomédicos o dispositivos de monitorización estructural o medioambiental. Por ejemplo, se considera que el número de dispositivos de uso diario conectados a internet se estima 50.000 millones para el año 2020. La mayoría de estos dispositivos (“internet of things”) son de un tamaño muy reducido o se encuentran integrados en otros equipos mayores.  La manera más sostenible de proporcionar energía a estos dispositivos es la autogeneración, de tal manera que no sea necesario recargarlos durante toda su vida útil. En este sentido, la generación de energía a partir de vibraciones ambientales es particularmente atractiva pues es una fuente de disponibilidad casi ilimitada y extraordinariamente barata al producirse por fuentes tales como las partes móviles de equipos, fluidos o incluso personas. Los generadores piezoeléctricos de escala nanométrica, también conocidos como nanogeneradores, son capaces de convertir vibraciones a pequeña escala en energía eléctrica, y por tanto son candidatos para reemplazar baterías que requieran una recarga constante, las cuales no se redimensionan con facilidad a muy pequeño tamaño   La generación de energía mediante nanogeneradores piezoeléctricos es una tecnología emergente y esta propuesta se basa en la preparación de materials novedosos polímero-cerámica con propiedades piezoeléctricas que puedan utilizarse para diseñar dispositivos baratos, medioambientalmente limpios y que se puedan integrar fácilmente como nanogeneradores en dispositivos electrónicos.


Síntesis y propiedades de nanopartículas luminiscentes para aplicaciones biomédicas



Investigador Principal: Alberto Escudero Belmonte
Periodo: 01-10-2014 / 30-09-2016
Organismo Financiador: Junta de Andalucia
Código: TAPOST-234
Componentes:

Resumen [+]

Las nanopartículas luminiscentes resultan de interés en Nanobiomedicina debido a sus diferentes aplicaciones, que incluyen sensores ópticos para la imagen de tejidos o estructuras intracelulares y para la detección y cuantificación de moléculas de interés biológico. En este proyecto se desarrollan nuevos métodos de síntesis de nanoestructuras uniformes de diferentes materiales inorgánicos (vanadatos, fluoruros, fosfatos y molibdatos dopados con cationes lantánidos) más económicos y respetuosos con el medio ambiente. También se evalúan las aplicaciones biomédicas de estos materiales, con especial atención al diseño de sensores y a su potencialidad como dispositivos para la detección e imagen de células cancerígenas. Este proyecto incluye la caracterización de los materiales obtenidos, la optimización de sus propiedades ópticas y magnéticas, el desarrollo de nuevos métodos de funcionalización y conjugación con moléculas de interés biológico, el análisis de la citotoxicidad de los materiales resultantes y el estudio de la interacción de las diferentes nanoestructuras funcionalizadas con células de distinta naturaleza, con especial atención al efecto de la morfología y composición química de las nanopartículas.


Integración de Nanoestructuras Fotónicas en Celdas Solares de Colorante



Investigador Principal: Hernán Míguez García
Periodo: 1-07-2014 / 30-06-2016
Organismo Financiador: Unión Europea
Código: FP7-PEOPLE-2013-IIF Marie Curie Actions
Componentes: Yuelong Li

Resumen [+]

El proyecto INPHOFLEX se enmarca en la búsqueda de ese aumento de eficiencia sin alterar completamente las propiedades de transparencia y flexibilidad. El grupo liderado por el Dr. Míguez en el Instituto de Ciencia de Materiales de Sevilla ha conseguido recientemente un aumento significativo sin perder la transparencia, mediante la introducción de estructuras fotónicas en la celda. Este proyecto continúa en esa senda de investigación y se basa en la hipótesis de que insertando nuevas estructuras ópticas flexibles en la celda se conseguirá el aumento deseado de eficiencia sin perder transparencia ni flexibilidad. Es en este contexto que se incorpora al grupo el Dr. Yuelong Li, experto en el desarrollo de celdas solares flexibles y autor de los principales trabajos en ese campo. El objetivo general del proyecto se afrontará a través de los siguientes objetivos y líneas de investigación integradas en el presente proyecto:


- Objetivo 1. Preparación de las celdas solares flexibles altamente eficientes y transparentes a través de la integración de nuevas estructuras fotónicas flexibles porosas sobre la capa de recolección de luz. Se prepará la nanoestructura óptica sobre el electrodo flexible. Las propiedades mecánicas de la estructura han de ser tales que la celda resultante debe ser estable contra la flexión y estiramiento.
- Objetivo 2. Preparación de las celdas solares flexibles altamente eficientes y transparentes a través de la integración de nanoestructuras fotónicas flexibles de polímero para que actúen como espejos traseros. Se fabricará una nanoestructura fotónica flexible para ser transferida sobre la parte trasera de la celda de manera que actúe como retroreflector. Se trata de un espejo de bajo peso y capaz de resistir la flexión de la misma sin perder calidad óptica.
- Objetivo 3. Preparación de las celdas solares altamente eficientes y flexibles mediante la integración de dispersores aleatoriamente distribuidos: diseño de una estructura desordenada que maximice la absorción de la luz y la captura electrónica a la vez que preserve parcialmente la transparencia. Se introducirán en el electrodo centros dispersores, desordenadamente distribuidos y de un tamaño y forma bien definidos, con el propósito de controlar el transporte difuso de luz a través de la celda para maximizar la probabilidad de absorción así como la eficiencia de captura electrónica. Se trabajará también para que los diseños de dispersión propuestos preserven una buena parte de la transmisión de la luz de forma difusa, de manera que la celda solar resultante deje pasar parte de la claridad.
El presente proyecto comprende el desarrollo de tanto del diseño teórico óptico de las nanoestructuras fotónicas optimizado para la obtención de la máxima eficiencia, así como la realización experimental de las nanoestructuras y de los ulteriores dispositivos fotovoltaicos.


Desarrollo de procesos de combustión catalítica de hidrógeno y estudio de su integración en dispositivos para aplicaciones portátiles



Investigador Principal: Asunción Fernández Camacho
Periodo: 16-05-2014 / 15-05-2016
Organismo Financiador: Junta de Andalucía
Código: P12-TEp-862
Componentes: Julián Martínez, Gisela Arzac, Dirk Hufschmidt, Joaquín Ramírez, M.Carmen Vera, Vanda Godinho, Lionel Cervera, T.Cristina Rojas, Olga Montes, Mariana Paladini, Jaime Caballero-Hernández

Resumen [+]

El hidrógeno como vector de transporte y almacenamiento de energía es un candidato muy atractivo en el contexto de un mayor uso de las energías renovables y limpias. La producción y el uso de la energía basada en la tecnología del hidrógeno es de especial relevancia en pequeña escala para aplicaciones portátiles (y potencialmente escalable para aplicaciones estacionarias). En el presente proyecto se abordará el estudio del proceso de combustión catalítica o controlada de hidrógeno en los distintos aspectos que puedan conducir a una configuración final integrada con un sistema de generación de H2 en aplicaciones portátiles. Para ello se aprovecharán las sinergias integrando investigadores de dos grupos del PAI: i) Del grupo TEP217, especialistas en almacenamiento y generación de hidrógeno en sistemas basados en hidruros metálicos, hidruros complejos y composites de hidruros reactivos; así como en el uso de catalizadores y aditivos para controlar y mejorar las cinéticas de estos procesos. ii) Del grupo FQM342, especialistas en la obtención de cerámicos porosos de alto interés como soportes de catalizadores en entornos agresivos de combustión. Además la colaboración se completa con la participación de la empresa Abengoa Hidrógeno S.A. que participa en calidad de subcontratada como especialistas en sistemas de producción y almacenamiento de hidrógeno.
En particular se trabajará en este proyecto en las siguientes líneas de actuación:
1.- Desarrollo de catalizadores y soportes para la combustión controlada. Típicamente cerámicas porosas biomórficas de carburo de silicio y catalizadores clásicos tipo metal noble y nuevos catalizadores de bajo coste a desarrollar en el proyecto.
2.- Desarrollo de los reactores necesarios para el estudio de la combustión controlada. Típicamente para flujos de hidrógeno de unos pocos ml/min y para la escala de un generador de H2 ya disponible de 0.5 a 1.5 L/min.
3.- Acoplamiento al sistema de combustión controlada de los sistemas portátiles de generación de hidrógeno que hemos desarrollado en proyectos anteriores.
4.- Aplicación de la tecnología de pulverización catódica de una manera exploratoria en este proyecto para depositar los catalizadores de combustión catalítica en sustratos porosos.
5.- Caracterización microestructural y química de los soportes y catalizadores en la nanoescala para seguir los procedimientos de síntesis y evolución en operación.
 


Estudio de la inmovilización de metales pesados por micas de alta carga sintéticas organofuncionalizadas: pruebas a escala de laboratorio



Investigador Principal: María Dolores Alba Carranza
Periodo: 16-05-2014 / 16-02-2019
Organismo Financiador: Junta de Andalucía
Código: P12-FQM-567
Componentes:

Resumen [+]

El tema central del proyecto aborda la exigencia tecnológica mediambiental de desarrollar metodologías avanzadas para la eliminación de agentes contaminantes. El interés y los esfuerzos encaminados al desarrollo de nuevas tecnologías orientadas a tratamientos más eficientes en la inmovilización y revalorización de los residuos peligrosos es crecientes en los planes de I + D + i de los últimos años. Es en este escenario donde debe encuadrarse el presente proyecto y en concreto en el marco de la gestión de cationes de metales pesados, tema de elevado interés social en la presente década.

Desde la segunda mitad del siglo XX la Humanidad se ha enfrentado a un enorme desarrollo científico y tecnológico que es el responsable de un incremento de la contaminación mediambiental. Como ejemplo podemos mencionar dos problemas que en la actualidad son motivos de preocupación y actuación de la Junta de Andalucía: contaminación de los litorales andaluces y las aguas residuales urbanas. Por tanto, estamos ante un problema complejo en el que los agentes contaminantes son variados, las fuentes de procedencia son diversas y las vías o rutas seguidas por los distintos contaminantes, frecuentemente, escapan al control necesario para evitar efectos indeseados sobre el entorno natural y urbano. Es por ello, que se demanda una investigación a nivel básico y aplicado de los mecanismos necesarios para la inmovilización de dichos cationes nocivos.

Los objetivos y alcance de este proyecto se basan en los avances llevados a cabos por otros grupos de investigación de la gestión de estos tipos de contaminantes y en los últimos resultados de la investigación llevada a cabo por el equipo de investigación que han permitido el diseño de silicatos laminares expansibles de alta carga con especiales propiedades como precursores para la retención de residuos nocivos. Por tanto, se propone en este proyecto la organofuncionalización de dichas micas sintéticas con grupos tioles o con cationes de alquilamonio de longitud de cadena variable y la evaluación de su capacidad de adsorción y retención irreversible de metales pesados.


Síntesis y caracterización de materiales cerámicos no oxídicos obtenidos por descomposición de precursores poliméricos



Investigador Principal: Pedro E. Sánchez Jiménez
Periodo: 16-05-2014 / 15-05-2016
Organismo Financiador: Junta de Andalucia
Código: TEP-1900
Componentes: Antonio Perejón Pazo, Cristina García Garrido

Resumen [+]

En los últimos años se ha incrementado sustancialmente el interés por las cerámicas derivadas de polímeros debido al amplísimo abanico de potenciales propiedades que presentan. Este tipo de cerámicas son más conocidas por las siglas PDC (polymer derived ceramics). Estos materiales se obtienen como producto de la descomposición térmica de un precursor polimérico, que deja como residuo una cerámica, habitualmente de naturaleza no oxídica, de tipo SiC, Si3N4, BN, etc. Las PDCs presentan una serie de propiedades termomecánicas y eléctricas de gran interés, así como una elevada resistencia a la temperatura y a la oxidación que los hacen muy adecuados para aplicaciones en condiciones extremas. Así, se han propuesto numerosas aplicaciones que abarcan desde la nanotecnología a la aeronáutica. Una importante ventaja es que dichas propiedades dependen en gran medida de las características químicas del precursor polimérico de partida así como del procedimiento de conversión en cerámica. Por tanto, es posible dirigir las propiedades de la cerámica final seleccionando cuidadosamente el precursor y las condiciones experimentales de ceramización. Además, las temperaturas necesarias para obtener materiales cerámicas por esta vía son relativamente suaves si se comparan con las necesarias mediante procesado cerámico convencional por consolidación de polvos cerámicos. Sin embargo, estos materiales presentan una limitación para ciertas aplicaciones debido a que durante la transformación en cerámica se producen defectos o fracturas que pueden llegar a hacer inservible el material. A pesar de su importancia, existen pocos estudios sistemáticos en los que se haya abordado la influencia de las condiciones de preparación en las propiedades finales de las cerámicas. En concreto, se planea utilizar los métodos de control inteligente de temperatura para el procesado de estos precursores poliméricos precerámicos. Esta metodología permite controlar con gran precisión las condiciones experimentales y ha demostrado ser muy útil para de controlar la estructura y microestructrura de productos preparados a partir de transformaciones térmicas de precursores. Así mediante el uso de los métodos de control inteligente de temperatura pretendemos obtener PDC libres de defectos, estudiar la influencia de las condiciones de la preparación en la nanoestructura de los productos y ahondar en el conocimiento de los procesos de conversión polímero-cerámica. Los productos obtenidos se caracterizarán en cuanto a su nanoestructura y propiedades, en particular la piezoresistividad, porosidad, capacidad de inserción de litio y la resistencia a la oxidación. 


Unidad altamente optimizada para un Sistema solar sostenible y mejorado



Investigador Principal: Hernán Míguez García
Periodo: 03-02-2014 / 31-12-2017
Organismo Financiador: Ministerio de Economía y Competitividad
Código: RTC-2014-2333-3 (Programa Retos)
Componentes: Juan Francisco Galisteo López, José María Miranda Muñoz

Resumen [+]

El objetivo del proyecto es el diseño, desarrollo, prototipado y validación de un sistema híbrido de cilindro parabólico termosolar- fotovoltaico que permita el almacenamiento y la gestionabilidad de la energía solar generada. Dicho sistema estará caracterizado por generar electricidad a menores costes que la tecnología estándar termosolar, de forma que el sistema integrado de concentración posea una mayor eficiencia.

El sistema híbrido consiste en un sistema cilindro parabólico termosolar y un receptor fotovoltaico de baja concentración. Entre estos dos componentes se sitúa un filtro dicroico de separación espectral, que recibe la luz reflejada del espejo primario del cilindro parabólico y permite la separación selectiva del espectro solar, dirigiendo una parte del mismo hacia el receptor fotovoltaico y el resto hacia el tubo absorbedor térmico. Dicho filtro dicroico se caracteriza por enviar al receptor fotovoltaico los fotones de luz con una longitud de onda a la cual dicho semiconductor opera más eficientemente, lo que conlleva a que el sistema integrado propuesto posee una mayor eficiencia que las tecnologías convencionales actuales, redundando en una mayor competitividad en costes. El sistema presenta además, por su parte termosolar, la capacidad de entrega de la energía de manera gestionable, permitiendo su almacenamiento para su introducción en la red eléctrica durante las franjas horarias en los que es más conveniente para el sistema.


Plasmas de Descarga de Barrera Dieléctrica para el Desarrollo de Procesos Industriales a Presión Atmosférica (Dbd-Tech)



Investigador Principal: José Cotrino Bautista
Periodo: 30-01-2014 / 29-01-2017
Organismo Financiador: Junta de Andalucía
Código: P12-FQM-2265 (Proyecto de Excelencia)
Componentes: Francisco José García García, Jorge Gil Rostra, Richard M. Lambert, Manuel Macías Montero, Alberto Palmero Acebedo, Victor Rico Gavira

Resumen [+]

La presente propuesta de proyecto de investigación persigue en primera instancia abordar una serie de aspectos básicos no resueltos relacionados con los mecanismos de la descarga barrera, las condiciones óptimas que deben cumplir los electrodos, la definición de un diseño óptimo de los mismos y el establecimiento de las mejores condiciones para la descarga.

En una segunda instancia y desde una perspectiva aplicada, se pretende la fabricación de dos tipos de reactores de descarga barrera mejorados para dos aplicaciones tecnológicas de gran impacto industrial. Primeramente para la funcionalización superficial de materiales avanzados persiguiendo, entre otros, el control lateral de la funcionalización según patrones litográficos. En segundo término, para el desarrollo de procesos de “plasma-catálisis” tendentes a aumentar la selectividad y disminuir el consumo energético de una serie de reacciones químicas de alto valor añadido e impacto industrial. Se prevé que, para ambos tipos de aplicaciones, los estudios básicos planteados permitan avanzar de manera clara en la optimización de los procesos finales con perspectivas de uso industrial.


Desarrollo de catalizadores biomórficos obtenidos a partir de biomasa residual para producción de hidrógeno y refino de bio-oil



Investigador Principal: Miguel Angel Centeno Gallego
Periodo: 1-01-2014 / 31-12-2017
Organismo Financiador: Ministerio de Economía y Competitividad
Código: ENE2013-47880-C3-2-R
Componentes: María Isabel Dominguez Leal, Carlos López Cartes, Leidy Marcela Martínez Tejada, Svetlana Ivanova

Resumen [+]

El objetivo principal del presente proyecto coordinado entre las universidades de Zaragoza y el Instituto de Ciencias de Materiales de Sevilla es el desarrollo de catalizadores metálicos soportados en carbones biomórficos (CB), para su posterior aplicación a procesos de producción de hidrógeno y de refino de bio-oil. La técnica de Mineralización Biomórfica es una innovadora herramienta capaz de sintetizar materiales inorgánicos funcionales utilizando como plantilla diversas estructuras formadas en procesos biológicos. Así, a partir de materiales lignocelulósicos (biomasa) se puede preparar una gran variedad de materiales cerámicos microestructurados. No obstante, la replicación de los distintos niveles jerárquicos existentes en los tejidos biológicos sigue siendo un gran reto a día de hoy. Para avanzar en esta línea, en este proyecto se va a abordar el estudio de la síntesis, caracterización y aplicación de catalizadores metálicos soportados en carbón biomórfico (Me/CB), con distribuciones de tamaño homogénea y porosidad jerarquizada.
La preparación de estos materiales se realiza mediante descomposición térmica en atmósfera reductora (o inerte) a alta temperatura, y elevadas velocidades de calentamiento, de un material lignocelulósico (e.g. celulosa, lignina, papel) impregnado con los precursores metálicos catalíticos. De esta manera, en una sola etapa, se obtiene un soporte carbonoso biomórfico con nanopartículas de metal dispersas en su superficie. Este método de síntesis presenta una extraordinaria versatilidad, puesto que además de poder utilizar diferentes materias primas de partida, se pueden obtener catalizadores de muy distintas composiciones y contenidos metálicos, así como su estructuración en dispositivos monolíticos y espumas. Como materias primas, además de celulosa, lignina o papel, se van estudiar biomasas agrícolas residuales.
Los catalizadores tipo Me/CB se pretenden aplicar en procesos de producción de hidrógeno (descomposición de hidrocarburos ligeros, de amoniaco y deshidrogenación de ácido fórmico), en la reacción de Water-Gas-Shift (WGS), y en distintas reacciones test de refino de bio-oil (conversión de acético a acetona, hidrogenación de vainillina y ciclohexeno y conversión de m-cresol a fenol).
 


Filtros Bio-cerámicos para partículas en motores diesel



Investigador Principal: Julián Martínez Fernández / Ricado Chacartegui
Periodo: 01-01-2014 / 31-12-2016
Organismo Financiador: Ministerio de Economía y Competitividad
Código: MAT2013-41233-R (Programa Retos)
Componentes: José Antonio Becerra Villanueva, Alfonso Bravo León, Manuel Jiménez Melendo, Antonio Ramírez de Arellano López, Joaquín Ramirez Rico, Francisco Varela Feria

Resumen [+]

La importancia del control de las emisiones de partículas en  motores diésel es fundamental dados el  volumen global  de los mismos y el impacto medioambiental y económico asociado. Los sistemas de control de partículas basados en modificaciones del proceso de combustión en el motor no son suficientes para alcanzar las exigencias normativas actuales, y menos las futuras, y por tanto necesariamente hay que emplear sistemas de postratamiento como los filtros. Existe un amplio margen de mejora de los mismos tanto en fiabilidad, control de la degradación de prestaciones, durabilidad, operación multicombustible y reducción de costes.

En el presente proyecto se abordará el desarrollo y fabricación de un filtro de partículas regenerativo en motores diésel que mejore las especificaciones de los sistemas actuales, basado en una nueva generación de materiales cerámicos bioderivados, y que integre sistemas para la combustión de partículas. Para ello se aprovecharán las sinergias integrando investigadores del: i) Grupo Maquinas y Motores Térmicos, GMTS, especialistas en motores de combustión interna ii) Grupo Materiales Biomiméticos y Multifuncionales, MBM, especialistas en la obtención de cerámicos porosos bioderivados, así como en caracterización físico-química y microestructural. El proyecto se completa con la colaboración de empresas en la evaluación de la tecnología y su aplicabilidad industrial.

Se trabajará en las siguientes líneas:

-Determinación de rutas de procesado para el desarrollo de elementos filtrantes con propiedades físico‐químicas idóneas, en base a los conocimientos previos en materiales bioderivados y nuevas tecnologías relativas al uso de geles de SiO2.
-Determinación de catalizadores idóneos y sistemas para su deposición.
-Fabricación de los elementos filtrantes constituidos de soporte poroso más catalizador.
-Caracterización exhaustiva de las propiedades microstructurales y físico-químicas de interés para la aplicación.
-Desarrollo de sistemas de activación para la regeneración del filtro.
-Diseño y fabricación de los filtros con geometría idónea y dimensiones prototipo.
-Diseño de la unidad piloto y estudio de la integración y operación sobre el motor de referencia.
-Diseño final del filtro para su instalación industrial.

Estudios previos desarrollados por MBM en estos materiales bioderivados han demostrado su potencialidad como elementos filtrantes de gas a altas temperaturas en plantas de gasificación de carbón, lo que avala el éxito de este proyecto, que abordará las mejoras necesarias para desarrollar la tecnología en las condiciones de combustión de los motores diésel, bajo condiciones dinámicas en vehículos y filtros regenerativos.

Una reducción de contaminantes en las emisiones de los motores diésel tendría un gran impacto medioambiental, para la salud y económico, debido a los cerca de 100 millones de vehículos diésel circulando en Europa y una industria vinculada con más de 2 millones de empleos directos y tendencia creciente en el mercado. Este proyecto aborda el Reto Social 3 del Horizonte 2020, Energía segura, limpia y eficiente. Además el uso de materiales biocerámicos permite la sustitución de los elementos metálicos empleados en la actualidad, por lo que también se alinea  con el Reto Social 5 del Horizonte 2020 en la búsqueda de alternativas a las materias primas esenciales en aplicaciones ya existentes reduciendo la dependencia de importaciones y sostenibilidad de las aplicaciones.