Menú secundario

Artículos SCI


Synthesis of sol-gel pyrophyllite/TiO2 heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity

El Gaidoumi, A.; Doña Rodríguez, J.M.; Pulido Melián, E.; González-Díaz, O.M.; Navío Santos, J.M.; El Bali, B.; Kherbeche, A.
Surfaces and Interfaces, 14 (2019) 19-25


We successfully synthesized an efficient photoactive pyrophyllite/TiO2 heterostructures using a sol-gel route at ambient temperature. The samples were prepared by exfoliation of a pyrophyllite layered-type clay by TiO2. The prepared samples exhibited strong photocatalytic activity for the degradation of phenol. The heterostructure PTi750 (SBET = 16.58 m2/g) calcined at 750 °C, in which the mixed phases of anatase and rutile exist (52.2% anatase/10.7% rutile), showed the highest photocatalytic activity against commercial TiO2Aeroxide P25. The methanol washed PTi750 was 5 times faster than the corresponding unwashed sample; phenol was totally degraded with a TOC reduction of 89.2%. The materials have been characterized by: X-ray diffraction (XRD), Diffuse reflectance UV–vis spectrophotometry (UV–Vis DRS), scanning electron microscopy (SEM) and BET specific surface area.

Marzo, 2019 | DOI: 10.1016/j.surfin.2018.10.003

Sample-Controlled analysis under high pressure for accelerated process studies

Perejon, A; Sanchez-Jimenez, PE; Soria-Hoyo, C; Valverde, JM; Criado, JM; Perez-Maqueda, LA
Journal of the American Ceramic Society, 102 (2019) 1338-1346


The potential of controlled rate thermal analysis (CRTA) for studying high-pressure gas-solid processes has been evaluated. CRTA is a type of smart temperature program based on a feedback system that uses any experimental signal related to the process evolution for commanding the temperature evolution. In this work, an instrument that uses the gravimetric signal for CRTA control has been designed and used for the study of two high-pressure gas-solid reactions: the highly exothermic thermal oxidation of TiC under high pressure of oxygen and the reduction in Fe2O3 under high pressure of hydrogen. Advantages of CRTA for discriminating overlapping processes and appraising kinetic reaction mechanisms are shown.

Marzo, 2019 | DOI: 10.1111/jace.15960

Anisotropic lattice expansion determined during flash sintering of BiFeO3 by in-situ energy-dispersive X-ray diffraction

Wassel, MAB; Perez-Maqueda, LA; Gil-Gonzalez, E; Charalambous, H; Perejon, A; Jha, SK; Okasinski, J; Tsakalakos, T
Scripta Materialia, 162 (2019) 286-291


BiFeO3 has a Curie temperature (T-c) of 825 degrees C, making it difficult to sinter using conventional methods while maintaining the purity of the material, as unavoidably secondary phases appear at temperatures above T-c Flash sintering is a relatively new technique that saves time and energy compared to other sintering methods. BiFeO3 was flash sintered at 500 degrees C to achieve 90% densification. In-situ energy dispersive X-ray diffraction (EDXRD) revealed that the material did not undergo any phase transformation, having been sintered well below the Tc. Interestingly, anisotropic lattice expansion in the material was observed when the sample was exposed to the electric field. 

Marzo, 2019 | DOI: 10.1016/j.scriptamat.2018.11.028

Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission

Geng, DL; Cabello-Olmo, E; Lozano, G; Miguez, H
ACS Photonics, 6 (2019) 634-641


Rare-earth-based phosphors are the materials on which current solid-state lighting technology is built. However, their large crystal size impedes the tuning, optimization, or manipulation of emitted light that can be achieved by their integration in nanophotonic architectures. Herein we demonstrate a hybrid plasmonic-photonic architecture capable of both channeling in a specific direction and enhancing by eight times the emission radiated by a macroscopically wide layer of nanophosphors. In order to do so, a slab of rare-earth-based nanocrystals is inserted between a dielectric multilayer and a metal film, following a rational design that optimizes the coupling of nanophosphor emission to collective modes sustained by the metal-dielectric system. Our approach is advantageous for the optimization of solid-state lighting systems.

Marzo, 2019 | DOI: 10.1021/acsphotonics.8b01407

Trapping of Gas Bubbles in Water at a Finite Distance below a Water-Solid Interface

Esteso, V; Carretero-Palacios, S; Thiyam, P; Miguez, H; Parsons, DF; Brevik, I; Bostrom, M
Langmuir, 35 (2019) 4218-4223


Gas bubbles in a water-filled cavity move upward because of buoyancy. Near the roof, additional forces come into play, such as Lifshitz, double layer, and hydrodynamic forces. Below uncharged metallic surfaces, repulsive Lifshitz forces combined with buoyancy forces provide a way to trap micrometer-sized bubbles. We demonstrate how bubbles of this size can be stably trapped at experimentally accessible distances, the distances being tunable with the surface material. By contrast, large bubbles (>= 100 mu m) are usually pushed toward the roof by buoyancy forces and adhere to the surface. Gas bubbles with radii ranging from 1 to 10 mu m can be trapped at equilibrium distances from 190 to 35 nm. As a model for rock, sand grains, and biosurfaces, we consider dielectric materials such as silica and polystyrene, whereas aluminium, gold, and silver are the examples of metal surfaces. Finally, we demonstrate that the presence of surface charges further strengthens the trapping by inducing ion adsorption forces.

Marzo, 2019 | DOI: 10.1021/acs.langmuir.8b04176

Promoting effect of CeO2, ZrO2 and Ce/Zr mixed oxides on Co/gamma-Al2O3 catalyst for Fischer-Tropsch synthesis

Garcilaso, V; Barrientos, J; Bobadilla, LF; Laguna, OH; Boutonnet, M; Centeno, MA; Odriozola, JA
Renewable Energy, 132 (2019) 1141-1150


A series of cobalt-based catalysts have been synthesized using as support gamma-Al2O3 promoted by ceria/zirconia mixed oxides with a variable Ce/Zr molar ratio. The obtained catalysts demonstrated oxide promotion results in the protection of the major textural properties, especially for Zr-rich solids. Reducibility of cobalt species was enhanced by the presence of mixed oxides. The chemical composition of the oxide promoter influenced not only physicochemical properties of final catalysts but also determined their performance during the reaction. In this sense, Zr-rich systems presented a superior catalytic performance both in total conversion and in selectivity towards long chain hydrocarbons. The observed Zr-promotion effect could be explained by two significant contributions: firstly, the partial inhibition of Co-Al spinel compound formation by the presence of Zr-rich phases which enhances the availability of Co actives site and secondly, Zr-associate acidic sites promote higher hydrocarbons selectivity.

Marzo, 2019 | DOI: 10.1016/j.renene.2018.08.080

CuxCo3-xO4 ultra-thin film as efficient anodic catalysts for anion exchange membrane water electrolysers

Lopez-Fernandez, E; Gil-Rostra, J; Espinos, JP; Gonzalez-Elipe, AR; Yubero, F; de Lucas-Consuegra, A
Journal of Power Sources, 415 (2019) 136-144


CuxCo3-xO4 ultra-thin films, deposited by magnetron sputtering at oblique angles have been used as anodic catalysts in anion exchange membrane water electrolysers. It has been demonstrated that the used deposition procedure provides porous and amorphous samples with a strict control of the total catalyst load and Co/Cu ratio. Electrocatalytic tests showed a maximum performance for the oxygen evolution reaction at Co/Cu atomic ratio around 1.8. The optimized anodic catalyst presented a long-term stability confirmed by accelerated lifetime tests together with the chemical surface analysis of the used samples. The effect of the crystallization of a single layer CuxCo3-xO4 and a multilayer (CuO/Co3O4)(n) anodic catalyst samples was also investigated. The observed loss of catalytic performance found in both cases may prove that a particular local chemical environment around the Co and Cu sites acts as an efficient catalytic site for the oxygen evolution reaction. A catalyst film with the optimum Co/Cu atomic ratio was incorporated into a Membrane Electrode Assembly, using a sputtered Ni film as cathode. Current density values up to 100 mA cm(-2) at 2.0 V were obtained in 1.0 M KOH electrolyte. Upon normalization by the amount of catalyst, this performance is one of the highest reported in literature.

Marzo, 2019 | DOI: 10.1016/j.jpowsour.2019.01.056

A theoretical study of the bonding capabilities of the zinc-zinc double bond

Ayala, R; Galindo, A
International Journal of Quantum Chemistry, 119 (2019) e25823


The theoretical knowledge about the zinc-zinc bond has been recently expanded after the proposal of a zinc-zinc double bond in several [Zn-2(L)(4)] compounds (Angew. Chem. Int. Ed.2017, 56, 10151-10155). Prompted by these results, we have selected the [Zn-2(CO)(4)] species, isolobally related to ethylene, and theoretically investigated the possible (2)-Zn-2-coordination to several first-row transition metal fragments. The [Zn-2(CO)(4)] coordination to the metal fragment produces an elongation of the dizinc bond and a concomitant pyramidalization of the [Zn(CO)(2)] unit. These structural parameters are indicative of -backdonation from the metal to the coordinated dizinc moiety, as occurred with ethylene ligand. A quantum theory of atoms in molecules study of the ZnZn bond shows a decrease of (BCP), delta(2)(BCP) (ZnZn) and delocalization indexes (Zn,Zn), relative to corresponding values in the parent [Zn-2(CO)(4)] molecule. The ZnZn and MZn bonds in these [((2)-Zn-2(CO)(4))M(L)(n)] complexes can be described as shared interactions with an important covalent component where the ZnZn bond is preserved, albeit weakened, upon coordination.

Marzo, 2019 | DOI: 10.1002/qua.25823

Combining dietary phenolic antioxidants with polyvinylpyrrolidone: transparent biopolymer films based on p-coumaric acid for controlled release

Contardi, M; Heredia-Guerrero, JA; Guzman-Puyol, S; Summa, M; Benitez, JJ; Goldoni, L; Caputo, G; Cusimano, G; Picone, P; Di Carlo, M; Bertorelli, R; Athanassioua, A; Bayer, IS
Journal of Materials Chemistry B, 7 (2019) 1384-1396


Polyvinylpyrrolidone (PVP) has probably been one of the most utilized pharmaceutical polymers with applications ranging from a blood plasma substitute to nanoparticle drug delivery, since its synthesis in 1939. It is a highly biocompatible, non-toxic and transparent film forming polymer. Although high solubility of PVP in aqueous environment is advantageous, it still poses several problems for some applications in which sustained targeting and release are needed or hydrophobic drug inclusion and delivery systems are to be designed. In this study, we demonstrate that a common dietary phenolic antioxidant, p-coumaric acid (PCA), can be combined with PVP covering a wide range of molar ratios by solution blending in ethanol, forming new transparent biomaterial films with antiseptic and antioxidant properties. PCA not only acts as an effective natural plasticizer but also establishes H-bonds with PVP increasing its resistance to water dissolution. PCA could be released in a sustained manner up to a period of 3 days depending on the PVP/ PCA molar ratio. Sustained drug delivery potential of the films was studied using methylene blue and carminic acid as model drugs, indicating that the release can be controlled. Antioxidant and remodeling properties of the films were evaluated in vitro by free radical cation scavenging assay and in vivo on a murine model, respectively. Furthermore, the material resorption of films was slower as PCA concentration increased, as observed from the in vivo full-thickness excision model. Finally, the antibacterial activity of the films against common pathogens such as Escherichia coli and Staphylococcus aureus and the effective reduction of inflammatory agents such as matrix metallopeptidases were demonstrated. All these properties suggest that these new transparent PVP/ PCA films can find a plethora of applications in pharmaceutical sciences including skin and wound care.

Marzo, 2019 | DOI: 10.1039/c8tb03017k

Transparent and Robust All-Cellulose Nanocomposite Packaging Materials Prepared in a Mixture of Trifluoroacetic Acid and Trifluoroacetic Anhydride

Guzman-Puyol, S; Ceseracciu, L; Tedeschi, G; Marras, S; Scarpellini, A; Benitez, JJ; Athanassiou, A; Heredia-Guerrero, JA
Nanomaterials, 9 (2019) 368


All-cellulose composites with a potential application as food packaging films were prepared by dissolving microcrystalline cellulose in a mixture of trifluoroacetic acid and trifluoroacetic anhydride, adding cellulose nanofibers, and evaporating the solvents. First, the effect of the solvents on the morphology, structure, and thermal properties of the nanofibers was evaluated by atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. An important reduction in the crystallinity was observed. Then, the optical, morphological, mechanical, and water barrier properties of the nanocomposites were determined. In general, the final properties of the composites depended on the nanocellulose content. Thus, although the transparency decreased with the amount of cellulose nanofibers due to increased light scattering, normalized transmittance values were higher than 80% in all the cases. On the other hand, the best mechanical properties were achieved for concentrations of nanofibers between 5 and 9 wt.%. At higher concentrations, the cellulose nanofibers aggregated and/or folded, decreasing the mechanical parameters as confirmed analytically by modeling of the composite Young's modulus. Finally, regarding the water barrier properties, water uptake was not affected by the presence of cellulose nanofibers while water permeability was reduced because of the higher tortuosity induced by the nanocelluloses. In view of such properties, these materials are suggested as food packaging films.

Marzo, 2019 | DOI: 10.3390/nano9030368

Fluorinated and Platinized Titania as Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater Coming from Handicrafts Factories

Murcia, J.J.; Cely, A.C.; Rojas, H.A.; Hidalgo, M.C.; Navío, J.A.
Catalysts, 9 (2019) 179


In this study, commercial and lab-prepared TiO2 were modified by fluorination and platinum photodeposition; and the effect of these modifications over the physicochemical and photocatalytic properties of TiO2 was evaluated. It was found that F and Pt addition leads to the modification of the optical and textural properties of TiO2. The materials prepared were tested in the photocatalytic degradation of different organic dyestuffs such as methylene blue (MB) and methyl orange (MO); the degradation of commercial anilines employed in the staining of natural fibers was also evaluated. Photocatalysis was also studied in this work as an eco-friendly treatment of wastewater coming from handicrafts factories. In general it was observed that the effectiveness of the photocatalytic treatment strongly depends on the substrate to be degraded, thus, fluorinated and platinized commercial Titania (Pt-F-P25) showed the best photocatalytic performance in the MB and MO photodegradation and in contrast, in the case of the anilines the highest degradation was obtained over commercial TiO2 fluorinated (F-P25). These results can be explained by differences observed in the structure and in the adsorption of these dyestuffs over the photocatalysts surfaces. F-P25 photocatalyst also demonstrated to be the best material for the treatment of real wastewater coming from handicrafts factories.

Febrero, 2019 | DOI: 10.3390/catal9020179

Holmium doped fiber thermal sensing based on an optofluidic Fabry-Perot microresonator

Lahoz, F; Martin, IR; Soler-Carracedo, K; Caceres, JM; Gil-Rostra, J; Yubero, F
Journal of Luminescence, 206 (2019) 492-497


An optical temperature sensor suitable for label free liquid sensing has been designed and characterized. The sensor combines the photochemical stability of rare earth doped glasses and the high sensitivity of interferometric resonators. It is formed by a planar Eabry-Perot (FP) microcavity filled with the liquid to be monitored. A Ho3+ doped tapered optical fiber has been placed inside the microcavity surrounded by the fluid medium. An external laser is focused on the optical fiber inside the cavity to induce the luminescence of the Ho3+ ions, which couples to the FP optical resonances. The spectral position of the FP resonances is highly sensitive to the refractive index of the cavity medium. A second laser is co-aligned with the first one to locally heat the liquid medium around the optical fiber. An average blue shift of the FP resonances around 32 pm/degrees C is measured. The limit of detection of the laser induced heating of the liquid medium is about 0.3 degrees C in the biological temperature range. Alternatively, a hot-plate is used to heat the system. Interestingly, a red shift of the FP modes is observed with 75 pm/degrees C dependence and 0.12 degrees C limit of detection features.

Febrero, 2019 | DOI: 10.1016/j.jlumin.2018.10.103

Mechanism of Photoluminescence Intermittency in Organic-Inorganic Perovskite Nanocrystals

Galisteo-Lopez, JF; Calvo, ME; Rojas, TC; Miguez, H
ACS Applied Materials & Interfaces, 11 (4) (2019) 6344-6349


Lead halide perovskite nanocrystals have demonstrated their potential as active materials for optoelectronic applications over the past few years. Nevertheless, one issue that hampers their applicability has to do with the observation of photoluminescence intermittency, commonly referred to as "blinking", as in their inorganic counterparts. Such behavior, reported for structures well above the quantum confinement regime, has been discussed to be strongly related to the presence of charge carrier traps. In this work, we analyze the characteristics of this intermittency and explore the dependence on the surrounding atmosphere, showing evidence for the critical role played by the presence of oxygen. We discuss a possible mechanism in which a constant creation/annihilation of halide-related carrier traps takes place under light irradiation, with the dominant rate being determined by the atmosphere.

Febrero, 2019 | DOI: 10.1021/acsami.8b17122

Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts

J.J. Murcia, L.G. Arias Bolivar, H.A. Rojas Sarmiento, E.G. Ávila Martínez, C. Jaramillo Páez, M.A. Lara, J.A. Navío Santos, M.C. Hidalgo López
Environmental Science and Pollution Research (2018) 1-9


In this study, the treatment of wastewater coming from a river highly polluted with domestic and industrial effluents was evaluated. For this purpose, series of photocatalysts obtained by ZnO and TiO2 modification were evaluated. The effect of metal addition and Ti precursor (in the case of the titania series) over the physicochemical and photocatalytic properties of the materials obtained was also analyzed. The evaluation of the photocatalytic activity showed that semiconductor modification and precursor used in the materials synthesis are important factors influencing the physicochemical and therefore the photocatalytic properties of the materials obtained. The water samples analyzed in the present work were taken from a highly polluted river, and it was found that the effectiveness of the photocatalytic treatment increases when the reaction time increases and for both, wastewater samples and isolated Escherichia coli strain follow the next order Pt/TiO2 << ZnO. It was also observed that biochemical and chemical demand oxygen and turbidity significantly decrease after treatment, thus indicating that photocatalysis is a non-selective technology, which can lead to recover wastewater containing different pollutants.

Febrero, 2019 | DOI: 10.1007/s11356-018-1592-3

High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants

Jimenez, PES; Perejon, A; Guerrero, MB; Valverde, JM; Ortiz, C; Maqueda, LAP
Applied Energy, 235 (2019) 543-552


High energy density, cycling stability, low cost and scalability are the main features required for thermochemical energy storage systems to achieve a feasible integration in Concentrating Solar Power plants (CSP). While no system has been found to fully satisfy all these requirements, the reversible CaO/CaCO3 carbonation reaction (CaL) is one of the most promising since CaO natural precursors are affordable and earth-abundant. However, CaO particles progressively deactivate due to sintering-induced morphological changes during repeated carbonation and calcinations cycles. In this work, we have prepared acicular calcium and magnesium acetate precursors using a simple, cost-effective and easily scalable technique that requires just the natural minerals and acetic acid, thereby avoiding expensive reactants and environmentally unfriendly solvents. Upon thermal decomposition, these precursors yield a stable porous structure comprised of well dispersed MgO nanoparticles coating the CaO/CaCO3 grains that is resistant to pore-plugging and sintering while at the same time exhibits high long term effective conversion. Process simulations show that the employment of these materials could significantly improve the overall CSP-CaL efficiency at the industrial level.

Febrero, 2019 | DOI: 10.1016/j.apenergy.2018.10.131

Growth of nanocolumnar thin films on patterned substrates at oblique angles

Garcia-Valenzuela, A; Munoz-Pina, S; Alcala, G; Alvarez, R; Lacroix, B; Santos, AJ; Cuevas-Maraver, J; Rico, V; Gago, R; Vazquez, L; Cotrino, J; Gonzalez-Elipe, AR; Palmero, A
Plasma Processes and Polymers, 16 (2019) e1800135


The influence of one dimensional substrate patterns on the nanocolumnar growth of thin films deposited by magnetron sputtering at oblique angles is theoretically and experimentally studied. A well-established growth model has been used to study the interplay between the substrate topography and the thin film morphology. A critical thickness has been defined, below which the columnar growth is modulated by the substrate topography, while for thicknesses above, the impact of substrate features is progressively lost in two stages; first columns grown on taller features take over neighboring ones, and later the film morphology evolves independently of substrate features. These results have been experimentally tested by analyzing the nanocolumnar growth of SiO2 thin films on ion-induced patterned substrates.

Febrero, 2019 | DOI: 10.1002/ppap.201800135

Synthesis of a cubic Ti(BCN) advanced ceramic by a solid-gas mechanochemical reaction

Chicardi, E; Garcia-Garrido, C; Beltran, AM; Sayagues, MJ; Gotor, FJ
Ceramics International, 45 (2019) 3878-3885


In this work, a titanium boron carbonitride advanced ceramic was successfully synthesised by a solid-gas mechanochemical reaction in a planetary ball mill from a mixture of elemental Ti, B, and C under nitrogen atmosphere. This material, with a general formula of Ti(BCN), exhibits a face-centred cubic structure (NaCl type) that is analogous to Ti(CN). This phase was gradually formed with sufficient milling time as a result of diffusional processes, which were permitted by the reduction of the energy in the system caused by the decrease in the spinning rate of the planetary ball mill. In contrast, under more energetic milling conditions, a mechanically induced self-sustaining reaction (MSR) took place, leading to the formation of a TiB2-Ti(CN) ceramic composite. The microstructural characterisation revealed that Ti(BCN) was composed of ceramic particles constituted of misoriented nanocrystalline domains. B, C and N were optimally distributed in the Ti(BCN) phase. The TiB2-Ti (CN) ceramic composite was composed of micrometric and nanometric particles homogeneously distributed. Additionally, the nitrogen content obtained for Ti(BCN) was higher than for the Ti(CN) phase in the composite material.

Febrero, 2019 | DOI: 10.1016/j.ceramint.2018.11.060

Eu3+ Luminescence in High Charge Mica: An In Situ Probe for the Encapsulation of Radioactive Waste in Geological Repositories

Martin-Rodriguez, R; Aguado, F; Alba, MD; Valiente, R; Perdigon, AC
ACS Applied Materials & Interfaces, 11 (4) (2019) 7559-7565


Isolation of high-level radioactive waste (HLW) in deep geological repositories (DGR) through a multibarrier concept is the most accepted approach to ensure long-term safety. Clay minerals are one of the most promising materials to be used as engineered barriers. In particular, high charge micas, as components of the engineered barrier, show superselectivity for some radioactive isotopes and a large adsorption capacity, which is almost twice that of the other low charge aluminosilicates. In addition, high charge micas are optimum candidates for decontamination of nuclear waste through two different mechanisms; namely an ion exchange reaction and a nonreversible mechanism involving the formation of new stable crystalline phases under hydrothermal conditions. In this work, we report a new in situ optical sensor based on the incorporation of Eu3+ in these high charge micas for tracking the long-term physical-chemical behavior of HLW contaminants in DRG under mild hydrothermal conditions. The incorporation of Eu3+ into the interlayer space of the mica originates a well resolved green and red luminescence, from both the 5D1 and 5D0 excited states, respectively. The formation of new crystalline phases under hydrothermal conditions involves important changes in the Eu3+ emission spectra and lifetime. The most interesting features of Eu3+ luminescence to be used as an optical sensor are (1) the presence or absence of the Eu3+ green emission from the 5D1 excited state, (2) the energy shift of the 5D0 → 7F0 transition, (3) the crystal-field splitting of the 7F1 Eu3+ level, and (4) the observed luminescence lifetimes, which are directly related to the interaction mechanisms between the lanthanide ions and the silicate network.

Febrero, 2019 | DOI: 10.1021/acsami.8b20030

Mesoporous pyrophyllite–titania nanocomposites: synthesis and activity in phenol photocatalytic degradation

A. El Gaidoumi; J.M. Doña-Rodríguez; E. Pulido Melián; O.M. González-Díaz; B. El Bali; J.A. Navío; A. Kherbeche
Research on Chemical Intermediates, 45 (2019) 333-353


Pyrophyllite–TiO2 nanocomposite PTi750 was successfully synthesized using a sol–gel method at ambient temperature based on exfoliation of the pyrophyllite layered clay by incorporation of the TiO2 precursor titanium(IV) t-butoxide. PTi750 exhibited higher photocatalytic activity in phenol degradation compared with commercial TiO2 Aeroxide P25. Ag-photodeposited PTi750 was more photoactive than PTi750, exhibiting detoxification, total degradation, and good mineralization of polluted solution and excellent stability after five reuses at optimal conditions in terms of the parameters pH, H2O2 concentration, and photocatalyst amount. The nanocomposites were investigated using several techniques, viz. diffuse-reflectance ultraviolet–visible (UV–Vis) spectrophotometry, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis, X-ray fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller (BET) specific surface area measurements.

Febrero, 2019 | DOI: 10.1007/s11164-018-3605-8

Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a Mechanically Induced Self-Sustaining Reaction

Aviles, MA; Cordoba, JM; Sayagues, MJ; Gotor, FJ
Inorganic Chemistry, 58 (2019) 2565-2575


The complete ZnSxSe1-x solid solution was successfully obtained by the mechanochemical process denoted as a mechanically induced self-sustaining reaction. Excellent control of the chemical stoichiometry of the solid solution was possible by adjusting the atomic ratio of the starting Zn/S/Se elemental mixture subjected to milling. A mixture of both wurtzite-2H (hexagonal) and zinc blende (cubic) structures was always obtained, although for a similar milling time the proportion of the zinc blende structure increased with the Se content in the solid solution. However, wurtzite was the major phase for S-rich compositions when milling was stopped just after ignition. It was demonstrated that milling induces the wurtzite-to-zinc blende phase transition. The 8H hexagonal polytype was also observed in samples subjected to long milling times. Variation of the lattice parameters for both structures with the x value in the solid solution presented an excellent linearity, confirming the validity of Vegard's law. However, variation of the band-gap energy (E-g) with x was not perfectly linear, and a small bowing parameter of 0.34 was obtained. It was possible to tune the E-g value between those of the end members of the solid solution in a continuous manner by adjusting the stoichiometry of the solid solution. The morphology and crystalline domain size can also be controlled by adjusting, in this case, the postignition milling time of the mechanochemical process.

Febrero, 2019 | DOI: 10.1021/acs.inorgchem.8b03183