Menú secundario

Artículos SCI



2017


Synthesis and characterization of Rh/MnO2-CeO2/Al2O3 catalysts for CO-PrOx reaction


Martinez, TLM; Laguna, OH; Lopez-Cartes, C; Centeno, MA
Molecular Catalysis, 440 (2017) 9-18

ABSTRACT

Rh/MnO2-CeO2/Al2O3 catalysts with different manganese-to-ceria ratios have been synthesized, characterized and tested in CO-PrOx reaction. The physicochemical properties of the solids were studied by XRD, Raman spectroscopy, BET surface area, H-2-TPR, TGA-DTG and TEM. The differences observed in the textural, structural and redox properties were related to the Mn-to-ceria ratio of the samples. The segregation of Mn species was observed at high Mn-to-Ce ratios. In opposite way, MnO2-CeO2 solid solutions were obtained at low Mn to Ce ones. In this last case, the physicochemical properties of the solids were favored by the intimate Rh-Ce-Mn contact. The effect of the Mn-Ce presence on Rh catalysts which promotes the catalytic behavior towards selective CO oxidation was observed to be better at low temperatures. At higher temperatures, Mn species promote the Reverse Water Gas Shift reaction, whilst ceria promotes the H-2 oxidation in the whole range of working temperatures.


Octubre, 2017 | DOI: 10.1016/j.mcat.2017.06.018

High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells


Garcia-Garcia, FJ; Beltran, AM; Yubero, E; Gonzalez-Elipe, AR; Lambert, RM
Journal of Power Sources, 363 (2017) 251-259

ABSTRACT

Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of,gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable I-V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work. 


Septiembre, 2017 | DOI: 10.1016/j.jpowsour.2017.07.085

Europium-doped NaGd(WO4)(2) nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing


Laguna, M; Escudero, A; Nuñez, NO; Becerro, AI; Ocaña, M
Dalton Transactions, 46 (2017) 11575-11583

ABSTRACT

Uniform Eu-doped NaGd(WO4)(2) nanophosphors with a spherical shape have been synthesized for the first time by using a wet chemistry method based on a homogeneous precipitation process at low temperature (120 degrees C) in ethylene glycol/water mixtures. The obtained nanoparticles crystallized into the tetragonal structure and presented polycrystalline character. The europium content in such phosphors has been optimized through the analysis of the luminescence dynamics (lifetime measurements). By coating the Eu3+-doped wolframate based nanoparticles with fluorescein through a layer-by-layer (LbL) approach, a wide range (4-10) ratiometric pH-sensitive sensor has been developed, which uses the pH insensitive emission of Eu3+ as a reference.

 


Septiembre, 2017 | DOI: 10.1039/c7dt01986f

Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants


Benitez-Guerrero, M; Valverde, JM; Sanchez-Jimenez, PE; Perejon, A; Perez-Maqueda, LA
Solar Energy, 153 (2017) 188-199

ABSTRACT

Thermochemical energy storage in Concentrated Solar Power plants by means of the Calcium-Looping process is a promising novel technology that would allow for a higher share of renewables. A main benefit of this technology is the use of widely available, non-toxic and environmentally friendly calcium carbonate minerals as raw materials to store energy. Efficient integration of the Calcium-Looping process into Concentrated Solar Power plants involves the endothermic calcination of CaCO3 in the solar receiver while the exothermic carbonation of CaO is carried out at high temperature under high CO2 partial pressure. The heat released by this reaction is carried out by the excess CO2 and employed for power generation by means of a closed CO2 cycle. This work explores the multicycle Calcium-Looping performance of naturally occurring CaCO3 minerals such as limestone, chalk and marble for thermochemical energy storage in Concentrated Solar Power plants. Despite their similar composition (almost pure CaCO3), these minerals exhibit a significant difference in their Calcium-Looping multicycle activity, which may be attributed to differences in particle size and microstructure. Pore plugging at the Calcium-Looping conditions for thermochemical energy storage tested in our work is a main limiting mechanism on the multicycle CaO carbonation activity.


Septiembre, 2017 | DOI: 10.1016/j.solener.2017.05.068

Enhanced green fluorescent protein in optofluidic Fabry-Perot microcavity to detect laser induced temperature changes in a bacterial culture


Lahoz, F; Martin, IR; Walo, D; Freire, R; Gil-Rostra, J; Yubero, F; Gonzalez-Elipe, AR
Applied Physics Letters, 111 (2017) 111103

ABSTRACT

Thermal therapy using laser sources can be used in combination with other cancer therapies to eliminate tumors. However, high precision temperature control is required to avoid damage in healthy surrounding tissues. Therefore, in order to detect laser induced temperature changes, we have used the fluorescence signal of the enhanced Green Fluorescent Protein (eGFP) over-expressed in an E. coli bacterial culture. For that purpose, the bacteria expressing eGFP are injected in a Fabry-Perot (FP) optofluidic planar microcavity. In order to locally heat the bacterial culture, external infrared or ultraviolet lasers were used. Shifts in the wavelengths of the resonant FP modes are used to determine the temperature increase as a function of the heating laser pump power. Laser induced local temperature increments up to 6-7 degrees C were measured. These results show a relatively easy way to measure laser induced local temperature changes using a FP microcavity and using eGFP as a molecular probe instead of external nanoparticles, which could damage/alter the cell. Therefore, we believe that this approach can be of interest for the study of thermal effects in laser induced thermal therapies. 


Septiembre, 2017 | DOI: 10.1063/1.4990870

Carbon nanofibers replacing graphene oxide in ceramic composites as a reinforcing-phase: Is it feasible?


Cano-Crespo, Rafael; Malmal Moshtaghioun, Bibi; Gomez-Garcia, Diego; Dominguez-Rodriguez, Arturo; Moreno, Rodrigo
Journal of the European Ceramic Society, 37 (2017) 3791-3796

ABSTRACT

In recent years, the interest of graphene and graphene-oxide has increased extraordinarily due to the outstanding properties concurring in this material. In ceramic science, the possibility of combining excellent electrical conductivities together with an enhancement of mechanical properties has motivated the research in fabrication of graphene oxide-reinforced ceramic composites despite the intrinsic difficulties for sintering. In this work a comparison is made between graphene oxide-reinforced alumina composites and carbon nanofiber-reinforced alumina ones. It will be concluded that the improvement of mechanical properties is scarce, if any. Since carbon nanofibers have also a good electrical conductivity their importance for future applications as a replacement of more sophisticated but expensive graphene-based ceramic composites will be stressed.


Septiembre, 2017 | DOI: 10.1016/j.jeurceramsoc.2017.03.027

In Vitro and in Vivo Study of Poly(Lactic-co-Glycolic) (PLGA) Membranes Treated with Oxygen Plasma and Coated with Nanostructured Hydroxyapatite Ultrathin Films for Guided Bone Regeneration Processes


Torres-Lagares, D; Castellanos-Cosano, L; Serrera-Figallo, MA; Garcia-Garcia, FJ; Lopez-Santos, C; Barranco, A; Elipe, ARG; Rivera-Jimenez, C; Gutierrez-Perez, JL
Polymers, 9 (2017) art. 410

ABSTRACT

The novelty of this study is the addition of an ultrathin layer of nanostructured hydroxyapatite (HA) on oxygen plasmamodified poly(lactic-co-glycolic) (PLGA) membranes (PO2) in order to evaluate the efficiency of this novel material in bone regeneration. Methods: Two groups of regenerative membranes were prepared: PLGA (control) and PLGA/PO2/HA (experimental). These membranes were subjected to cell cultures and then used to cover bone defects prepared on the skulls of eight experimental rabbits. Results: Cell morphology and adhesion of the osteoblasts to the membranes showed that the osteoblasts bound to PLGA were smaller and with a lower number of adhered cells than the osteoblasts bound to the PLGA/PO2/HA membrane (p < 0.05). The PLGA/PO2/HA membrane had a higher percentage of viable cells bound than the control membrane (p < 0.05). Both micro-CT and histological evaluation confirmed that PLGA/PO2/HA membranes enhance bone regeneration. A statistically significant difference in the percentage of osteoid area in relation to the total area between both groups was found. Conclusions: The incorporation of nanometric layers of nanostructured HA into PLGA membranes modified with PO2 might be considered for the regeneration of bone defects. PLGA/PO2/HA membranes promote higher osteosynthetic activity, new bone formation, and mineralisation than the PLGA control group.


Septiembre, 2017 | DOI: 10.3390/polym9090410

Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications


Escudero, Alberto; Becerro, Ana I.; Carrillo-Carrion, Carolina; Nunez, Nuria O.; Zyuzin, Mikhail V.; Laguna, Mariano; Gonzalez-Mancebo, Daniel; Ocana, Manuel; Parak, Wolfgang J.
Nanophotonics, 6 (2017) 881-921

ABSTRACT

Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.


Septiembre, 2017 | DOI: 10.1515/nanoph-2017-0007

Influence of milling parameters on the solid-gas synthesis of TiCxN1-x by mechanically induced self-sustaining reaction


Chicardi, E; Gotor, FJ; Alcala, MD; Cordoba, JM
Powder Technology, 319 (2017) 12-18

ABSTRACT

The synthesis of a titanium carbonitride solid solution (TiCxN1 − x) performed in a high-energy planetary mill by a solid-gas Mechanically induced Self-sustaining Reaction (MSR) was used to study the influence of a full set of experimental milling parameters on the ignition time (tig) as a measure of the mechanical dose rate provided by the mill. The highly exothermic Ti-C-N mixture was selected to ensure no competitiveness between MSR and diffusion-controlled routes under the milling conditions employed. The results showed that the dependence of tig on the spinning rate followed a potential function, with a potential factor higher than the value of 3 that would be obtained if a perfect collision model is assumed. The scalability of milling processes performed using planetary mills was confirmed. The results suggested that to define a milling experiment, it is necessary to provide not only the Ball-to-Powder mass Ratio (BPR) and spinning rate values, as is usually performed, but also the full set of milling parameters including the nature of the milling media (vial and balls), the number and size of balls, the mass of the powder charge, the pressure of the reactive gas and even the volume of the vial.


Septiembre, 2017 | DOI: 10.1016/j.powtec.2017.06.035

High-temperature thermal conductivity of biomorphic SiC/Si ceramics


Ramirez-Rico, J.; Singh, M.; Zhu, D.; Martinez-Fernandez, J.
Journal of Materials Science, 52 (2017) 10038-10046

ABSTRACT

Thermal conductivity of biomorphic SiC/Si, a silicon carbide + silicon containing two phase material, was evaluated using the laser steady-state heat flux method. These materials were processed via silicon melt infiltration of wood-derived carbon scaffolds. In this approach, heat flux was measured through the thickness when one side of the specimen was heated with a 10.6-A mu m CO2 laser. A thin mullite layer was applied to the heated surface to ensure absorption and minimize reflection losses, as well as to ensure a consistent emissivity to facilitate radiative loss corrections. The influence of the mullite layer was accounted for in the thermal conductivity calculations. The effect of microstructure and composition (inherited from the wood carbonaceous performs) on measured conductivity was evaluated. To establish a baseline for comparison, a dense, commercially available sintered SiC ceramic was also evaluated. It was observed that at a given temperature, thermal conductivity falls between that of single-crystal silicon and fine-grained polycrystalline SiC and can be rationalized in terms of the SiC volume fraction in biomorphic SiC/Si material.


Septiembre, 2017 | DOI: 10.1007/s10853-017-1199-y

Lead-Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature


Datta, Anuja; Sanchez-Jimenez, Pedro E.; Al Orabi, Rabih Al Rahal; Calahorra, Yonatan; Ou, Canlin; Sahonta, Suman-Lata; Fornari, Marco; Kar-Narayan, Sohini
Advanced Functional Materials, 27 (2017) 1701169

ABSTRACT

Ferroelectrics are important technological materials with wide-ranging applications in electronics, communication, health, and energy. While lead-based ferroelectrics have remained the predominant mainstay of industry for decades, environmentally friendly lead-free alternatives are limited due to relatively low Curie temperatures (T-C) and/or high cost in many cases. Efforts have been made to enhance T-C through strain engineering, often involving energy-intensive and expensive fabrication of thin epitaxial films on lattice-mismatched substrates. Here, a relatively simple and scalable sol-gel synthesis route to fabricate polycrystalline (Ba0.85Ca0.15)(Zr0.1Ti0.9)O-3 nanowires within porous templates is presented, with an observed enhancement of T-C up to similar to 300 degrees C as compared to similar to 90 degrees C in the bulk. By combining experiments and theoretical calculations, this effect is attributed to the volume reduction in the template-grown nanowires that modifies the balance between different structural instabilities. The results offer a cost-effective solution-based approach for strain-tuning in a promising lead-free ferroelectric system, thus widening their current applicability.


Agosto, 2017 | DOI: 10.1002/adfm.201701169

The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis


Paladini, M; Arzac, GM; Godinho, V; Hufschmidt, D; de Haro, MCJ; Beltran, AM; Fernandez, A
Applied Catalysis B-Environmental, 210 (2017) 342-351

ABSTRACT

Deactivation of a Co catalyst prepared as thin film by magnetron sputtering was studied for the sodium borohydride (SB) hydrolysis reaction under different conditions. Under high SB concentration in single run experiments, the formation of a B-O passivating layer was observed after 1.5 and 24 h use. This layer was not responsible for the catalyst deactivation. Instead, a peeling-off mechanism produced the loss of cobalt. This peeling-off mechanism was further studied in cycling experiments (14 cycles) under low SB concentrations. Ex-situ study of catalyst surface after use and solid reaction products (precipitates) was performed by X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The presence of cobalt hydroxide and oxyhydroxide was detected as major components on the catalyst surface after use and as precipitates in the supernatant solutions after washing. Cobalt borate, cobalt carbonate and oxycarbonate were also formed but in lesser amounts. These oxidized cobalt species were formed and further detached from the catalyst at the end of the reaction and/or during catalyst washing by decomposition of the unstable in-situ formed cobalt boride. Leaching of cobalt soluble species was negligible. Thin film mechanical detachment was also found but in a smaller extent. To study the influence of catalyst composition on deactivation processes, cycling experiments were performed with Co-B and Co-C catalysts, also prepared as thin films. We found that the deactivation mechanism proposed by us for the pure Co catalyst also occurred for a different pure Co (prepared at higher pressure) and the Co-B and Co-C samples in our experimental conditions. 


Agosto, 2017 | DOI: 10.1016/j.apcatb.2017.04.005

Biomorphic ceramics from wood-derived precursors


Ramirez-Rico, J.; Martinez-Fernandez, J.; Singh, M.
International Materials Reviews, 62 (2017) Issue 8

ABSTRACT

Materials development is driven by microstructural complexity and, in many cases, inspired by biological systems such as bones, shells and wood. In one approach, one selects the main microstructural features responsible for improved properties and design processes to obtain materials with such microstructures (continuous-fibre-reinforced ceramics, porous ceramics, fibrous ceramic monoliths, etc.). In a different approach, it is possible to use natural materials directly as microstructural templates. Biomorphic ceramics are produced from natural and renewable resources (wood or wood-derived products). A wide variety of SiC-based ceramics can be fabricated by infiltration of silicon or silicon alloys into cellulose-derived carbonaceous templates, providing a low-cost route to advanced ceramic materials with near-net shape potential and amenable to rapid prototyping. These materials have tailorable microstructure and properties, and behave like ceramic materials manufactured by advanced ceramic processing approaches. This review aims to be a comprehensive description of the development of bioSiC ceramics: from wood templates and their microstructure to potential applications of bioSiC materials.


Agosto, 2017 | DOI: 10.1080/09506608.2017.1354429

Cutin from agro-waste as a raw material for the production of bioplastics


Heredia-Guerrero, JA; Heredia, A; Dominguez, E; Cingolani, R; Bayer, IS; Athanassiou, A; Benitez, JJ
Journal of Experimental Botany, 68 (2017) 5401-5410

ABSTRACT

Cutin is the main component of plant cuticles constituting the framework that supports the rest of the cuticle components. This biopolymer is composed of esterified bi- and trifunctional fatty acids. Despite its ubiquity in terrestrial plants, it has been underutilized as raw material due to its insolubility and lack of melting point. However, in recent years, a few technologies have been developed to obtain cutin monomers from several agro-wastes at an industrial scale. This review is focused on the description of cutin properties, biodegradability, chemical composition, processability, abundance, and the state of art of the fabrication of cutin-based materials in order to evaluate whether this biopolymer can be considered a source for the production of renewable materials.


Agosto, 2017 | DOI: 10.1093/jxb/erx272

Large-scale high-temperature solar energy storage using natural minerals


Benitez-Guerrero, Monica; Sarrion, Beatriz; Perejon, Antonio; Sanchez-Jimenez, Pedro E.; Perez-Maqueda, Luis A.; Manuel Valverde, Jose
Solar Energy Materials and Solar Cells, 168 (2017) 14-21

ABSTRACT

The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.


Agosto, 2017 | DOI: 10.1016/j.solmat.2017.04.013

New insights into surface-functionalized swelling high charged micas: Their adsorption performance for non-ionic organic pollutants


Pazos, MC; Castro, MA; Cota, A; Osuna, FJ; Pavon, E; Alba, MD
Journal of Industrial and Engineering Chemistry, 52 (2017) 179-186

ABSTRACT

The major components of the wastewater from the petroleum refineries are benzene, toluene and phenol and one of the techniques applied to the treatment of effluents is sorption using organo-functionalized clay. The materials exploited in the present study are a family of surface-functionalized synthetic micas and their sorption capacities for non-ionic organic pollutants are analyzed. The organo-functionalization of their surface provides them the capacity to sorb effectively non-ionic pollutants in the interface. Their adsorption performance is a function of the alkylamonium properties such as the chain length, the mass fraction and the organization of the organic cation in the interlayer space of the micas.


Agosto, 2017 | DOI: 10.1016/j.jiec.2017.03.042

One-reactor plasma assisted fabrication of ZnO@TiO2 multishell nanotubes: assessing the impact of a full coverage on the photovoltaic performance


Filippin, Alejandro Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idigoras, Jesus; Burdet, Pierre; Sanchez-Valencia, Juan R.; Barranco, Angel; Migdley, Paul A.; Anta, Juan A.; Borras, Ana
Scientific Reports, 7 (2017) art 9621

ABSTRACT

This paper addresses the fabrication of vertically aligned ZnO@TiO2multishell nanotubes by a combined full vacuum-plasma approach at mild temperatures. The growth is carried out within the premises of a one-reactor approach, i.e. minimizing the number of vacuum chambers and sample transferences. In this way, the interface between ZnO and TiO2 is fully preserved from humidity thus increasing ZnO durability and stability. These nanostructures are studied by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy in STEM (EDX-STEM). High density one-dimensional arrays of these nanotubes formed on FTO substrates are applied as photoanode in a dye-sensitized solar cell (DSC). The evolution of the dye adsorption capacity and solar cells parameters are explored as a function of the crystallinity and thickness of the TiO2 shell. The results show the critical effect of a full coverage by TiO2 of ZnO core to explain the mixed results found in the literature.


Agosto, 2017 | DOI: 10.1038/s41598-017-09601-7

Crystal structure, NIR luminescence and X-ray computed tomography of Nd3+:Ba0.3Lu0.7F2.7 nanospheres


Gonzalez-Mancebo, D; Becerro, AI; Cantelar, E; Cusso, F; Briat, A; Boyer, D; Ocana, M
Dalton Transactions, 46 (2017) 6580-6587

ABSTRACT

Uniform, hydrophilic 50 nm diameter Nd3+-doped Ba0.3Lu0.7F2.7 nanospheres are synthesized at 120 degrees C using a singular one-pot method based on the use of ethylene glycol as solvent, in the absence of any additive. The composition and crystal structure of the undoped material are analyzed in detail using ICP and XRD, which reveals a BaF2 cubic crystal structure that is able to incorporate 70 mol% of Lu ions. This finding contrasts with the reported phase diagram of the system, where the maximum solubility is around 30 mol% Lu. XRD proves as well that the Ba0.3Lu0.7F2.7 structure is able to incorporate Nd3+ ions up to, at least 10 mol%, without altering the uniform particles morphology. The Nd-doped particles exhibit near-infrared luminescence when excited at 810 nm. The maximum emission intensity with the minimum concentration quenching effect is obtained at 1.5% Nd doping level. X-ray computed tomography experiments are carried out on powder samples of the latter composition. The sample significantly absorbs X-ray photons, thus demonstrating that the Nd3+-doped Ba0.3Lu0.7F2.7 nanospheres are good candidates as contrast agents in computed tomography.


Agosto, 2017 | DOI: 10.1039/c7dt00453b

Flash sintering of highly insulating nanostructured phase-pure BiFeO3


Perez-Maqueda, LA; Gil-Gonzalez, E; Perejon, A; Lebrun, JM; Sanchez-Jimenez, PE; Raj, R
Journal of the American Ceramic Society, 100 (2017) 3365-3369

ABSTRACT

We show that BiFeO3, that is electrically homogeneous, is a good insulator, and has a low dielectric constant (the properties desired in its applications), can be produced by flash sintering, which is nominally difficult to achieve by conventional and spark plasma sintering processes. The flash-sintered specimens had a uniform microstructure with a nanometric grain size of similar to 20 nm.


Agosto, 2017 | DOI: 10.1111/jace.14990

Thermal study of residues from greenhouse crops plant biomass


Morales, Laura; Garzon, Eduardo; Maria Martinez-Blanes, Jose; Jose Sanchez-Soto, Pedro
Journal of Thermal Analysis and Calorimetry, 129 (2017) 1111-1120

ABSTRACT

The principal aim of this work is to examine the effect of thermal treatments using a muffle furnace (static heating) and by simultaneous TG/DTA (dynamic heating) on selected greenhouse crops plant biomass investigated here as the first time. The effect of fractionation by sieving (<25 and <2.5 mm), preheating at 150 °C for 48 h and leaching with water on the thermal behavior has been studied. The observation of similar profiles of mass variation corresponding to several samples heated in air up to 1150 °C allows to conclude that particle size did not influence the thermal evolution, but the effect of heating cycle is evidenced. Thermal analysis in air of a representative sample showed the several mass variation steps and DTA exothermic effects produced by the complex thermal decomposition and pyrolysis of the organic matter. Elemental analysis (CHNS and O) of the starting samples and thermally treated revealed the effect of the temperature, with formation of ashes with lower C content from 44.37 to 0.70 mass% as a minimum after elimination of organic matter by heating. Leaching increased the thermal mass variation as an effect of elimination of water-soluble components. According to the present results, the size fractionation of the greenhouse crops biomass did not influence the results of elemental composition. The present study has provided results of interest concerning this biomass source of renewable energy originated by the remains of tomato (Solanum lycopersicum L.), being estimated the highest of all the biomass produced by the greenhouse crops agricultural industry in Almería (SE Spain).


Agosto, 2017 | DOI: 10.1007/s10973-017-6243-2

Páginas

icms