Menú secundario

Artículos SCI


ZnO activation by using activated carbon as a support: Characterisation and photoreactivity

Melian, EP; Diaz, OG; Rodriguez, JMD; Colon, G; Arana, J; Melian, JH; Navio, JA; Pena, JP
Applied Catalysis A-General, 364 (2009) 176-181


The effect of the mixing ZnO with different portions of activated carbon (AC) has been studied. The resulting catalysts were characterised and evaluated in the photocatalytic decomposition of aqueous pollutants. Changes in the catalyst colour and in the FTIR vibration bands of the surface hydroxyl groups were recorded. νOH vibrations were shifted to lower wavenumbers as AC loading increased, demonstrating modification of the acid-base character of the catalysts. Laser scattering studies showed that AC loading leads to smaller ZnO particles. BET surface area measurements and scanning electron micrograph (SEM) analysis showed agglomeration of ZnO particle pores in the AC structure.

Results showed that in addition to a synergistic effect of the AC-ZnO combination, AC content modifies the ZnO particle properties and consequently photocatalytic behaviour. This was evident in phenol degradation experiments where changes in the concentration profiles of the catechol and hydroquinone degradation intermediates, were observed. However, the AC-ZnO catalysts were less efficient than pure ZnO in the degradation of 2,4-dichlorophenol (DCP). This seems to be due to the strong adsorption of the DCP molecule on AC, resulting in lower diffusion to the catalytic ZnO and thus a lower rate of photocatalysis.

Julio, 2009 | DOI: 10.1016/j.apcata.2009.05.042

Study of the gilding technique used in polychromed stones and ceramics by dedicated laboratory-made micro X-ray diffraction and complementary techniques

Duran, A; Perez-Rodriguez, JL; de Haro, MCJ
Analytical and Bioanalytical Chemistry, 394 (2009) 1671-1677


This work describes the use of a new dedicated laboratory-made micro X-ray diffraction system for detecting the phases present in cross-sections of artworks. As an example, the phases present in samples from gilding ceramics and stone sculptures from the heritage of Seville (Spain) were successfully detected using this new system, which takes advantage of various devices developed for synchrotron radiation, and is complemented by the information provided by other techniques.

Julio, 2009 | DOI: 10.1007/s00216-009-2836-3

Light generation at the anomalous dispersion high energy range of a nonlinear opal film

Botey, M; Maymo, M; Molinos-Gomez, A; Dorado, L; Depine, RA; Lozano, G; Mihi, A; Miguez, H; Martorell, J
Optics Express, 17 (2009) 12210-12216


We study experimentally and theoretically light propagation and generation at the high energy range of a close-packed fcc photonic crystal of polystyrene spheres coated with a nonlinear material. We observe an enhancement of the second harmonic generation of light that may be explained on the basis of amplification effects arising from propagation at anomalous group velocities. Theoretical calculations are performed to support this assumption. The vector KKR method we use allows us to determine, from the linear response of the crystal, the behavior of the group velocity in our finite photonic structures when losses introduced by absorption or scattering by defects are taken into account assuming a nonzero imaginary part for the dielectric constant. In such structures, we predict large variations of the group velocity for wavelengths on the order or smaller than the lattice constant of the structure, where an anomalous group velocity behavior is associated with the flat bands of the photonic band structure. We find that a direct relation may be established between the group velocity reduction and the enhancement of a light generation processes such as the second harmonic generation we consider. However, frequencies for which the enhancement is found, in the finite photonic crystals we use, do not necessarily coincide with the frequencies of flat high energy bands.

Julio, 2009 | DOI: 10.1364/OE.17.012210

Nanoindentation of TiO2 thin films with different microstructures

Gaillard, Y; Rico, VJ; Jimenez-Pique, E; Gonzalez-Elipe, AR
Journal of Physics D: Applied Physics, 42 (2009) 145305


A series of nanoindentation tests has been carried out with TiO2 films produced by physical vapour deposition (PVD) under different conditions. Films with different microstructures and crystallographic structures have been prepared by changing experimental parameters such as the temperature of the substrate, the deposition angle (by the so-called glancing angle physical vapour deposition, GAPVD) or by exposing the growing film to a beam of accelerated ions. The obtained results of hardness and Young's modulus depict interesting correlations with the microstructure and structure of the films providing a general picture for the relationships between these characteristics and their mechanical properties. Different models have been used to extract Young's modulus and hardness parameters from the experimental nanoindentation curves. The obtained results are critically discussed to ascertain the ranges of validity of each procedure according to the type of sample investigated.

Julio, 2009 | DOI: 10.1088/0022-3727/42/14/145305

Stability of phyllosilicates in Ca(OH)2 solution: Influence of layer nature, octahedral occupation, presence of tetrahedral Al and degree of crystallinity

Mantovani, M; Escudero, A; Alba, MD; Becerro, AI
Applied Geochemistry, 24 (2009) 1251-1260


This paper presents the results of a comprehensive investigation of the interaction of layered silicates with Ca(OH)2 in hydrothermal conditions. The study is intended to evaluate the stability of the clay buffer in radioactive waste repositories, at the intermediate stages of concrete leaching, when the pH is controlled by the dissolution of portlandite. The influence of layer nature, octahedral occupation, presence of tetrahedral Al and degree of crystallinity will be assessed by analysing the behaviour of a set of well-selected phyllosilicates and using the combined capabilities of 29Si and 27Al MAS-NMR spectroscopy, powder X-ray diffraction and SEM/EDX. The results show that the main factor affecting the stability of the clay is the octahedral occupation, so that trioctahedral phyllosilicates are much more stable than dioctahedral ones. The nature and expandability of the layer does not seem to much influence the stability of the clay, so that a 2:1 expandable phyllosilicate shows the same stability as a chemically analogous 1:1 non-expandable phyllosilicate. However other factors like the poor crystallinity of the starting material or the presence of Al in the tetrahedral sheet of trioctahedral phyllosilicates weaken the clay structure in alkaline conditions and favour the transformation towards other phases.

Julio, 2009 | DOI: 10.1016/j.apgeochem.2009.03.012

A recurrent error which needs to be resolved

Ortega, A
Thermochimica Acta, 491 (2009) 116-117


The recent paper by Jankovic et al. [B. Janković, B. Adnađevic, J. Jovanović; Thermochimica Acta 452 (2007) 106] and other similar papers have raised a problem which needs to be resolved. These authors use the method of Kennedy and Clark [J.A. Kennedy, S.M. Clark, Thermochimica Acta 307 (1997) 27] which is conceptually erroneous; this is analyzed in this paper.

Julio, 2009 | DOI: 10.1016/j.tca.2009.02.009

Electrical characteristics of mixed Zr–Si oxide thin films prepared by ion beam induced chemical vapor deposition at room temperature

Ferrer, FJ; Frutos, F; Garcia-Lopez, J; Jimenez, C; Yubero, F
Thin Solid Films, 517 (2009) 5446-5452


Mixed Zr–Si oxide thin films have been prepared at room temperature by ion beam decomposition of organometallic volatile precursors. The films were flat and amorphous. They did not present phase segregation of the pure single oxides. A significant amount of impurities (–C–, –CHx, –OH, and other radicals coming from partially decomposed precursors) remained incorporated in the films after the deposition process. This effect is minimized if the Ar content in the O2/Ar bombarding gas is maximized. Static permittivity and breakdown electrical field of the films were determined by capacitance–voltage and current–voltage electrical measurements. It is found that the static permittivity increases non-linearly from ~ 4 for pure SiO2 to ~ 15 for pure ZrO2. Most of the dielectric failures in the films were due to extrinsic breakdown failures. The maximum breakdown electrical field decreases from ~ 10.5 MV/cm for pure SiO2 to ~ 45 MV/cm for pure ZrO2. These characteristics are justified by high impurity content of the thin films. In addition, the analysis of the conduction mechanisms in the formed dielectrics is consistent to Schottky and Poole-Frenkel emission for low and high electric fields applied, respectively.

Julio, 2009 | DOI: 10.1016/j.tsf.2009.01.099

Degradation of n-Butyl tin Chlorides in Waters. A Comparative Assessment of the Process by Photo-assisted and Chemical- treatment Methods

Navio, JA; Cerrillos, C; Macias, M
Journal of Advanced Oxidation Technologies, 12 (2009) 158-163


Study of degradation processes of metals used in some artworks from the cultural heritage of Andalusia, Spain

Duran, A; Herrera, LK; de Haro, MCJ; Perez-Rodriguez, JL; Justo, A
Revista de Metalurgia, 45 (2009) 277-286


The study of the alteration processes of metals, such as lead, bronze, iron and tin-mercury alloys, used in some of the
most important chosen artefacts of Andalusian Cultural Heritage is the main objective of this paper. Hydrocerussite
and cerussite were detected in lead seals stored in a hole of cardboard. Bronze is altered to atacamite by environmental
contamination, which is also responsible for the formation of rust from iron. Corrosion of the tin-mercury surface
of amalgam mirrors produces tin monoxide and tin dioxide and releases liquid mercury from the solid phase.

Julio, 2009 | DOI: 10.3989/revmetalm.0827

Growth of Crystalline TiO2 by Plasma Enhanced Chemical Vapor Deposition

Borras, A; Sanchez-Valencia, JR; Widmer, R; Rico, VJ; Justo, A; Gonzalez-Elipe, AR
Crystal Growth & Design, 9 (2009) 2868-2876


TiO2 thin films in the form of anatase have been prepared by plasma enhanced chemical vapor deposition (PECVD) at 523 K as the substrate temperature and a low working pressure. The study of the microstructure and texture of the films at different stages of deposition show that their growth follows the Kolmogorov’s model developed to describe the evolution of crystalline films from a saturated homogeneous medium. An additional characteristic feature of the growth process by PECVD is the formation of different crystalline domains, particularly at low deposition rates. The effects of this parameter and of the characteristics of the substrate on the growing process are also addressed.

Junio, 2009 | DOI: 10.1021/cg9001779

Thermal Evolution of WC/C Nanostructured Coatings by Raman and In Situ XRD Analysis

El Mrabet, S; Abad, MD; Lopez-Cartes, C; Martinez-Martinez, D; Sanchez-Lopez, JC
Plasma Processes and Polymers, 6 (2009) S444-S449


In this work, a series of WC/C nanostructured films were deposited on silicon substrates by changing the ratio of sputtering power applied to graphite and WC magnetron sources (PC/PWC: 0, 0.1, 0.5, 1). The thermal stability of WC/C coatings was followed in situ by means of X-ray diffraction measurements up to 1 100 °C in vacuum (10−1 Pa). Initially, the film microstructure is composed of nanocrystalline WC1−x and W2C phases. As the PC/PWC ratio increases the crystallinity decreases, and WC1−x becomes the predominant phase from PC/PWC = 0.1. The results show that the structural evolution with temperature of all studied layers depends essentially on their initial phase and chemical composition (determined by the synthesis conditions: ratio PC/PWC). The coating deposited at PC/PWC = 0 reveals a transformation of W2C phase into W and W3C phases at 400 °C. However, the samples with PC/PWC greater than 0 exhibits an improved thermal stability up to 600–700 °C where the WC1−x begins to transform into W2C and WC phases. At 900 °C, WC is the predominant phase, especially for those coatings prepared with higher ratios. Further annealing above 1 000 °C yields W as the foremost phase. The thermal behaviour was later studied by means of Raman spectroscopy measurements at certain temperatures where the main changes in phase composition were observed. Particularly, a fitting analysis was carried out on the D and G bands typical of disordered and amorphous carbon. The changes induced during heating are discussed in terms of the positions of D and G lines, and full width at half maximum (FWHM).

Junio, 2009 | DOI: 10.1002/ppap.200931004

Chemical Reactions in 2D: Self-Assembly and Self-Esterification of 9(10),16-Dihydroxypalmitic Acid on Mica Surface

Heredia-Guerrero, JA; San-Miguel, MA; Sansom, MSP; Heredia, A; Benitez, JJ
Langmuir, 25 (2009) 6869-6874


9(10),16-Dihydroxypalmitic acid (diHPA) is a particularly interesting polyhydroxylated fatty acid (1) because it is the main monomer of cutin, the most abundant biopolyester in nature, and (2) because the presence of a terminal and a secondary hydroxyl group in midchain positions provides an excellent model to study their intermolecular interactions in a confined phase such as self-assembled layers. In this study we have combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy, as well as molecular dynamics (MD) simulations to conclude that the self-assembling of diHPA molecules on mica is a layer by layer process following a Brunauer−Emmett−Teller (BET) type isotherm and with the first layer growing much faster than the rest. Interactions between secondary hydroxyls reinforce the cohesive energy of the monolayer, while the presence of the terminal hydroxyl group is necessary to trigger the multilayered growth. Besides, XPS and ATR-FT-IR spectroscopies clearly indicate that spontaneous self-esterification occurs upon self-assembling. The esterification reaction is a prerequisite to propose a self-assembly route for the biosynthesis of cutin in nature. Molecular dynamics simulations have shown that internal molecular reorganization within the self-assembled layers provides the appropriate intermolecular orientation to facilitate the nucleophilic attack and the release of a water molecule required by the esterification reaction.

Junio, 2009 | DOI: 10.1021/la9001412

M-Doped Al2TiO5 (M=Cr, Mn, Co) Solid Solutions and their Use as Ceramic Pigments

Dondi, M; Lyubenova, TS; Carda, JB; Ocaña, M
Journal of the American Ceramic Society, 92 (2009) 1972-1980


New ceramic pigments based on the tialite (Al2TiO5) structure, doped with Co (pink), Cr (green), or Mn (brown), were prepared through the pyrolysis of aerosols followed by calcination of the obtained powders at 1400°C. The expected decomposition of Al2TiO5 into a mixture of Al2O3 and TiO2 on refiring was inhibited by Cr-doping and also by co-doping with Mg the Mn- or Co-doped samples. Microstructure and phase evolution during pigment preparation were monitored by scanning electron microscopy and XRPD. Unit cell parameters of tialite were determined by Rietveld refinement of the X-ray diffraction patterns, revealing in all cases the formation of solid solutions where the solubility of dopants in the Al2TiO5 lattice followed the trend Co<Mn<Cr. The valence state and possible location of dopants in the tialite lattice were investigated by X-ray photoelectron spectra and diffuse reflectance spectroscopies, which suggested the presence of Cr3+ ions in a large interstitial site of the tialite lattice with a distorted octahedral geometry, and of Mn3+ and Co2+ ions in the Al3+ octahedral sites of the tialite lattice in the former case, and in both Al3+ and Ti4+ octahedral sites in the latter. Testing the ceramic glazes assessed the technological behavior of pigments, which found that the color stability was reasonably good for the Mn-doped tialite and the Cr-doped pigment, although the latter suffered a small loss of green hue. The Co-doped pigment was found to be not stable in glazes, undergoing a cobalt-leaching effect.

Junio, 2009 | DOI: 10.1111/j.1551-2916.2009.03172.x

Phyllites used as waterproofing layer materials for greenhouses crops in Spain: multivariate statistical analysis applied to their classification based on X-ray fluorescence analysis

Garzon, E; Garcia-Rodriguez, IG; Ruiz-Conde, A; Sanchez-Soto, PJ
X-Ray Spectrometry, 38 (2009) 429-438


The results are presented for the chemical characterization carried out with 53 raw material samples with phyllosilicates from outcrops located between the provinces of Almería and Granada (SE Spain) in order to use them as waterproof layers under the floors of greenhouses. For this purpose, the samples have been studied by these techniques: X-Ray Diffraction (XRD), X-Ray Fluorescence (WDXRF), Scanning Electron Microscopy (SEM), chemical analysis by energy-dispersive X-Ray detection (EDX), and thermogravimetry. To isolate groups of phyllite samples with similar chemical profiles and correlations between the samples, the WDXRF data (11 chemical elements) have been processed using the methodology of exploratory multivariate statistical analyses: cluster analysis, main-component analysis, and discriminating canon analysis. This study was performed as a screening test and as a means of finding similarities and correlations among all 53 phyllite samples, allowing the isolation of groups of phyllite samples with similar chemical profiles. The results indicate that the 53 phyllite samples can be divided into two main groups. The first group is subdivided into two subgroups (1 and 2), one of which includes most of the samples. The latter is further classified into three blocks with the same chemical composition. This allows to search for the raw material with potentially the best waterproof characteristics within the five groups. The classification is of validity as a screening test for subsequent experimental determinations concerning the physical properties of these samples.

Junio, 2009 | DOI: 10.1002/xrs.1199

Fibrous MnO2 Nanoparticles with (2 × 2) Tunnel Structures. Catalytic Activity in the Total Oxidation of Volatile Organic Compounds

Dominguez, MI; Navarro, P; Romero-Sarria, F; Frias, D; Cruz, SA; Delgado, JJ; Centeno, MA; Montes, M; Odriozola, JA
Journal of Nanoscience and Nanotechnology, 9 (2009) 3837-3842


Manganese oxides having 2 × 2 tunnel structures (cryptomelanes) have been synthesized by a milling method in order to test their efficiency as catalysts for the abatement of volatile organic compounds, using toluene as probe molecule. These materials present excellent textural properties, arising from the nanofiber morphology and were active for toluene total oxidation. DRIFTS of the adsorbed phase allow proposing the role of lattice oxygen in the catalytic reaction.

Junio, 2009 | DOI: 10.1166/jnn.2009.NS76

Application of 29Si and 27Al MAS NMR Spectroscopy to the Study of the Reaction Mechanism of Kaolinite to Illite/Muscovite

Mantovani, M; Escudero, A; Becerro, AI
Clays and Clay Minerals, 57 (2009) 302-310


Understanding the mechanisms for illitization of clay minerals has important applications in reconstructing geologic histories and determining the origins of physical and chemical characteristics of buried sediments. While many studies have been carried out on this topic, few have focused on the mechanism of illite formation from kaolinite. The purpose of this study was to investigate more deeply the illitization of kaolinite in KOH solution at a high solid/liquid ratio (1000 mg/mL). X-ray diffraction (XRD) and infrared spectroscopy were used to follow the formation of new crystalline phases and the composition of the octahedral sheet, while the transformation of the Si and Al local environments was analyzed by 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The results revealed that the first reaction stage consists of the diffusion of Al from the octahedral to the tetrahedral sheet of the kaolinite TO layers, giving rise to the precursors of the illite/muscovite nuclei. Combination of XRD with 27Al MAS NMR measurements indicated that a minimum amount of tetrahedral Al is required in the original TO layer before condensation of a second tetrahedral sheet occurs to complete the formation of the illite/muscovite TOT layers.

Junio, 2009 | DOI: 10.1346/CCMN.2009.0570303

Determination of nitrogen partitioning coefficients in superduplex stainless steels by NRA using a nuclear microprobe

Munoz, C; Morilla, Y; Lopez, JG; Paul, A; Odriozola, JA
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267 (2009) 2208-2211


Superduplex stainless steels (SDSSs) combine the good mechanical behavior and the high corrosion resistance of the ferrite (α-Fe) and austenite (γ-Fe) phases. The SDSSs properties depend strongly on the partitioning of the elements that form the alloy. The ferrite is generally enriched in P, Si, Cr and Mo while the content of Ni, Mn, Cu and N in the austenite phase is higher. Nitrogen is known to be a strong austenite stabilizer and its presence increases the strength and the pitting corrosion resistance of the stainless steels. While the global nitrogen content in SDSSs can be readily determined using elemental analyzers, it cannot be measured at a microscopic scale.

In this work, the nuclear microprobe of the Centro Nacional de Aceleradores (Sevilla) was used to obtain the quantitative distribution of nitrogen in SDSSs. A deuteron beam of 1.8 MeV was employed to determine the overall elemental concentration of the matrix by deuteron-induced X-ray emission, whereas the nitrogen partitioning coefficients were obtained by using the 14N(d, α0)12C nuclear reaction. Mappings of this element show that the nitrogen ratio between the ferrite and austenite phases ranges from 0.3 to 0.6 in the analyzed samples.

Junio, 2009 | DOI: 10.1016/j.nimb.2009.03.093

Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible and transferable Bragg mirrors of high dielectric contrast

Calvo, ME; Sobrado, OS; Lozano, G; Miguez, H
Journal of Materials Chemistry, 19 (2009) 3144-3148


Self-standing, flexible Bragg mirror films of high refractive index contrast and showing intense and wide Bragg peaks are herein presented. Nanoparticle-based one-dimensional photonic crystals are used as templates to infiltrate a polymer, which provides the multilayer with mechanical stability while preserving the dielectric contrast existing in the mold. Such films can be lifted off the substrate and used to coat another surface of arbitrary shape.

Mayo, 2009 | DOI: 10.1039/B902090J

W,N-Codoped TiO2-Anatase: A Sunlight-Operated Catalyst for Efficient and Selective Aromatic Hydrocarbons Photo-Oxidation

Kubacka, A; Bachiller-Baeza, B; Colon, G; Fernandez-Garcia, M
Journal of Physical Chemistry C, 113 (2009) 8553-8555


New W,N-doped TiO2 anatase-based materials are synthesized having both unprecedent high activity and selectivity in the gas-phase partial oxidation of aromatic hydrocarbons using sunlight as excitation energy and molecular oxygen as oxidant.

Mayo, 2009 | DOI: 10.1021/jp902618g

Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a-C Protective Coatings

Martinez-Martinez, D; Lopez-Cartes, C; Gago, R; Fernandez, A; Sanchez-Lopez, JC
Plasma Processes and Polymers, 6 (2009) S462-S467


Nanocomposite films composed by small crystallites of hard phases embedded in an amorphous lubricant matrix have been extensively studied as protective coatings. These kinds of coatings have often to work in extreme environments, exposed to high temperatures (above 800–900 °C), and/or oxidizing/corrosive atmospheres, which may resist. As a result, it is important to study the behavior of such coatings at high temperatures (thermal stability) and in the presence of oxygen (oxidation resistance). In this sense, we have selected a TiC/a-C nanocomposite coating with good mechanical and tribological properties in order to do several thermal tests under three different environments: high vacuum (10−6 mbar), low vacuum (10−1 mbar), and air. Our observations allow us to establish that the film microstructure is stable at least up to 1 000 °C in high vacuum. When oxygen is present, the practical temperature of use is reduced at 700 °C (low partial pressure) and 300 °C (air) by formation of Ti oxides and C removal.

Mayo, 2009 | DOI: 10.1002/ppap.200931002