Menú secundario

Artículos SCI



2018


Hydrodeoxygenation of vanillin over carbon supported metal catalysts


Santos, JL; Alda-Onggar, M; Fedorov, V; Peurla, M; Eranen, K; Maki-Arvela, P; Centeno, MA; Murzin, DY
Applied Catalysis A-General, 561 (2018) 137-149

ABSTRACT

Different carbon supported metal catalysts were synthesized, and characterized with various physico-chemical methods and tested in vanillin hydrodeoxygenation under 30 bar total pressure in water as a solvent at 100 degrees C. The catalysts exhibited high specific surface area and the metal dispersion decreased in following order: Pt/ C > Pd/C > Au/C > Rh/C > Ru/C. The most active catalyst was Pd/C followed by Ru/C. Vanillin hydrodeoxygenation proceeded via hydrogenation forming vanillyl alcohol further to its hydrogenolysis forming p-creosol. Both hydrogenation and hydrogenolysis were promoted by Pd/C, which exhibited rather high dispersion. The highest selectivity to p-creosol, 95% at complete vanillin conversion, was obtained with Pd/C. Kinetic modelling of vanillyl alcohol selectivity as a function of vanillin conversion was performed.


Julio, 2018 | DOI: 10.1016/j.apcata.2018.05.010

The Role of Metal Halide Perovskites in Next-Generation Lighting Devices


Lozano, G.
Journal of Physical Chemistry Letters, 9 (2018) 3987-3997

ABSTRACT

The development of smart illumination sources represents a central challenge for current technology. In this context, the quest for novel materials that enable efficient light generation is essential. Metal halide compounds with perovskite crystalline structure (ABX(3)) have gained tremendous interest in the last five years since they come as easy-to-prepare high performance semiconductors. Perovskite absorbers are driving the power-conversion-efficiencies of thin film photovoltaics to unprecedented values. Nowadays, mixed-cation, mixed-halide lead perovskite solar cells reach efficiencies consistently over 20% and promise to get close to 30% in multijunction devices when combined with silicon cells at no surcharge. Nonetheless, perovskites' fame extends further since extensive research on these novel semiconductors has also revealed their brightest side. Soon after their irruption in the photovoltaic scenario, demonstration of efficient color tunable-with high color purity-perovskite emitters has opened new avenues for light generation applications that are timely to discuss herein.


Julio, 2018 | DOI: 10.1021/acs.jpclett.8b01417

The effect of vitreous phase on mullite and mullite-based ceramic composites from kaolin wastes as by-products of mining, sericite clays and kaolinite


Sanchez-Soto, PJ; Eliche-Quesada, D; Martinez-Martinez, S; Garzon-Garzon, E; Perez-Villarejo, L; Rincon, JM
Materials Letters, 223 (2018) 154-158

ABSTRACT

Mullite precursors were prepared using kaolin waste, sericite clay containing kaolinite and industrial kaolin with addition of alumina in a wet medium to synthesize mullite (72 wt% Al2O3 and 28 wt% SiO2). Uniaxial pressed bars of the powdered mullite precursors were fired in the range 1400-1600 degrees C with soaking times 30-120 min. The resultant materials were studied by XRD and SEM-EDX. Bulk densities, apparent porosities and flexural strengths in four points were determined in the fired bars at 1500, 1550 and 1600 degrees C. It was concluded that the thermal behaviour of these mullite precursors was influenced by the presence of impurities in the raw materials. These impurities originate a liquid phase forming a glassy phase which produces a progressive and enhanced densification of the mullite materials by reaction sintering at 1500-1600 degrees C. The technical properties were also influenced by the relative proportion of vitreous phase. The microstructure of characteristic mullite crystals was revealed by SEM. It was emphasized the use of kaolin waste by-products of mining and sericite clays as valuable raw materials for mullite preparation.


Julio, 2018 | DOI: 10.1016/j.matlet.2018.04.037

Photo/Electrocatalytic Properties of Nanocrystalline ZnO and La–Doped ZnO: Combined DFT Fundamental Semiconducting Properties and Experimental Study


Ahsaine, A.H.; Slassi, A.; Naciri, Y.; Chennah, A.; Jaramillo‐Páez, C.; Anfar, Z.; Zbair, M.; Benlhachemi, A.; Navío, J.A.
Chemistry Select, 3 (2018) 7778-7791

ABSTRACT

This work reports the synthesis of nanocrystalline ZnO and 5% La‐doped ZnO (La/ZnO) materials for photo/electrocatalytic degradation of Rhodamine B. The samples were characterized by X‐Ray diffraction, scanning and transmission electron microscopy, X‐Ray photoelectron spectroscopy and diffuse reflectance spectra. The effect of La doping on electronic structure was investigated using density functional theory calculations (DFT), La‐doped ZnO showed an n‐type metallic nature compared to pristine ZnO and La doping creates occupied states within the band gap edge. Under UV light, La/ZnO showed higher kinetic constant and efficiency than ZnO. A possible mechanism was elaborated on the basis of DFT and active trapping measurements. Different initial Rhodamine B concentration were studied to assess the electro‐oxidation of RhB. The electrochemical degradation of RhB over La/ZnO spindles electrode was pronounced with three time's high kinetic constant. The superior electro/photoactivity of La/ZnO was due to its unique morphology, high charge separation of the charge carriers and higher conductivity induced by La‐doping (intermediary levels). Superoxide ions and holes were the main active species for the photodegradation. Whereas, synergetic effect of hydroxyl radicals and hypochlorite ions were responsible of the high RhB electrocatalytic degradation.


Julio, 2018 | DOI: 10.1002/slct.201801729

Origin of Light-Induced Photophysical Effects in Organic Metal Halide Perovskites in the Presence of Oxygen


Anaya, M; Galisteo-Lopez, JF; Calvo, ME; Espinos, JP; Miguez, H
Journal of Physical Chemistry Letters, 9 (2018) 3891-3896

ABSTRACT

Herein we present a combined study of the evolution of both the photoluminescence (PL) and the surface chemical structure of organic metal halide perovskites as the environmental oxygen pressure rises from ultrahigh vacuum up to a few thousandths of an atmosphere. Analyzing the changes occurring at the semiconductor surface upon photoexcitation under a controlled oxygen atmosphere in an X-ray photoelectron spectroscopy (XPS) chamber, we can rationalize the rich variety of photophysical phenomena observed and provide a plausible explanation for light-induced ion migration, one of the most conspicuous and debated concomitant effects detected during photoexcitation. We find direct evidence of the formation of a superficial layer of negatively charged oxygen species capable of repelling the halide anions away from the surface and toward the bulk. The reported PL transient dynamics, the partial recovery of the initial state when photoexcitation stops, and the eventual degradation after intense exposure times can thus be rationalized.


Julio, 2018 | DOI: 10.1021/acs.jpclett.8b01830

Structural, optical and X-ray attenuation properties of Tb3+: BaxCe1-xF3-x (x=0.18-0.48) nanospheres synthesized in polyol medium


Gonzalez-Mancebo, D; Becerro, AI; Genevois, C; Allix, M; Corral, A; Parrado-Gallego, A; Ocana, M
Dalton Transactions, 47 (2018) 8382-8391

ABSTRACT

Uniform Ba0.18Ce0.82F2.82 nanospheres have been obtained after aging a solution of barium and cerium nitrates and sodium tetrafluoroborate in a mixture of ethylene glycol and water at 120 degrees C for 20 hours. The diameter of the spheres could be tailored from 65 nm to 80 nm by varying the NaBF4 concentration while maintaining their colloidal stability in aqueous suspension. Increasing the aging temperature led to a phase transformation from hexagonal to cubic symmetry and to a concomitant increase of the Ba/Ce ratio, which reached a value close to the nominal one (50/50) at 240 degrees C. The same method was successful in obtaining Tb3+-doped nanospheres with homogeneous cation distribution and the same morphological features as the undoped material. An intense green emission was observed after the excitation of the Tb3+-doped samples through the Ce3+-Tb3+ energy transfer (ET) band. The ET efficiency increased with increasing Tb content, the maximum emission being observed for the 10% Tb-doped nanospheres. Aqueous suspensions of the latter sample showed excellent X-ray attenuation values that were superior to those of an iodine-based clinically approved contrast agent. Their fluorescence and X-ray attenuation properties make this material a potential dual bioprobe for luminescence bioimaging and X-ray computed tomography.


Julio, 2018 | DOI: 10.1039/c8dt01202d

Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials


Hurtado-Bermudez, S; Villa-Alfageme, M; Mas, JL; Alba, MD
Applied Radiation and Isotopes, 137 (2018) 177-183

ABSTRACT

The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. 
Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. 
In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction.


Julio, 2018 | DOI: 10.1016/j.apradiso.2018.04.008

Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy


Alcala, MD; Real, C; Fombella, I; Trigo, I; Cordoba, JM
Journal of Alloys and Compounds, 749 (2018) 834-843

ABSTRACT

FeCoNiCrMn(Al)-based powdered high entropy alloys were synthesized by a short time mechanical alloying process in a high energy planetary ball milling from mixtures of elemental powders, and subsequently sintered by a pressureless procedure. The composition and microstructure of the HEA phases before and after the sintering process were studied by X-ray diffraction, energy dispersive X-ray analysis (EDX) and scanning electron microscopy. The microhardness and tensile strength values for Fe1,8Co1,8Ni1,8Cr1,8Mn1,8Al1,0 HEA sintered at 1400 degrees C sample were 3,7 GPa and 1011 MPa, respectively. Statistical Fisher-Pearson coefficient of skewness and kurtosis were played to determine the optimum synthesis milling time. The use of NaCl as additive led on to a reduction of the as-milled grain size. After sintering, SEM study confirmed a segregation of the initial HEA phase directly related to the melting temperature of the elements. Three melting temperature groups were described (Cr, FeCoNi and Mn) and they agree with the observation in the elemental mapping study. The presence of Al favored the segregation of Cr. 


Junio, 2018 | DOI: 10.1016/j.jallcom.2018.03.358

Heteroatom framework distribution and layer charge of sodium Taeniolite


Perdigon, AC; Pesquera, C; Cota, A; Osuna, FJ; Pavon, E; Alba, MD
Applied Clay Science, 158 (2018) 246-251

ABSTRACT

The most advanced applications of clays depend crucially on their hydration state and swelling is probably the most important feature of expandable 2:1 layered silicate. Sodium Taeniolite, Na-TAE, a swelling trioctahedral fluormica, has been synthesized and studied using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and infrared and solid state NMR spectroscopies. The results indicated the formation of a swelling 2:1 phyllosilicate with actual layer charge lower than the nominal one. Herein, a new heteroatom distribution and more accurate composition could be deduced.


Junio, 2018 | DOI: 10.1016/j.clay.2018.03.036

Unexpected Optical Blue Shift in Large Colloidal Quantum Dots by Anionic Migration and Exchange


Acebron, M; Galisteo-Lopez, JF; Lopez, C; Herrera, FC; Mizrahi, M; Requejo, FG; Palomares, FJ; Juarez, BH
Journal of Physical Chemistry Letters, 9 (2018) 3124-3130

ABSTRACT

Compositional changes taking place during the synthesis of alloyed CdSeZnS nanocrystals (NCs) allow shifting of the optical features to higher energy as the NCs grow. Under certain synthetic conditions, the effect of those changes on the surface/interface chemistry competes with and dominates over the conventional quantum confinement effect in growing NCs. These changes, identified by means of complementary advanced spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and XAS (X-ray absorption spectroscopy), are understood in the frame of an ion migration and exchange mechanism taking place during the synthesis. Control over the synthetic routes during NC growth represents an alternative tool to tune the optical properties of colloidal quantum dots, broadening the versatility of the wet chemical methods.


Junio, 2018 | DOI: 10.1021/acs.jpclett.8b00741

Growth of nanocolumnar porous TiO2 thin films by magnetron sputtering using particle collimators


Garcia-Valenzuela, A; Alvarez, R; Rico, V; Cotrino, J; Gonzalez-Elipe, AR; Palmero, A
Surface & Coatings Technology, 343 (2018) 172-177

ABSTRACT

The selective incorporation of deposition species with preferential directionality is analyzed during the growth of TiO2 thin films by magnetron sputtering. Using wisely-designed collimators, tilted nanocolumnar morphologies are grown in a ballistic deposition regime, i.e. when most deposition species arrive at the film surface along well-defined preferential directions, and also in a thermalized deposition regime, when these species follow an isotropic momentum distribution in the plasma gas. The obtained results suggest that the use of particle collimators may promote the growth of porous thin films even in the classical magnetron sputtering configuration, when the target and the substrate are parallel. General insights are given on this approach and, as a proof of concept, its principles applied for the synthesis of nanostructured films in a laboratory-size reactor.


Junio, 2018 | DOI: 10.1016/j.surfcoat.2017.09.039

Pressure Effect on the Multicycle Activity of Natural Carbonates and a Ca/Zr Composite for Energy Storage of Concentrated Solar Power


Sarrion, B; Sanchez-Jimenez, PE; Perejon, A; Perez-Maqueda, LA; Valverde, JM
ACS Sustainable Chemistry & Engineering, 6 (2018) 7849-7858

ABSTRACT

This work is focused on the use of the Calcium-Looping process (CaL) in Concentrated Solar Power (CSP) plants for Thermochemical Energy Storage (TCES). Cheap, abundant and nontoxic natural carbonate minerals, such as limestone and dolomite, can be employed in this application to store energy through the cyclic calcination/carbonation of CaCO3. In a recent work, a closed CO2 cycle has been proposed for an efficient CaL-CSP integration in which the CO2 in excess effluent from the carbonator is used to generate electricity by means of a gas turbine. Process simulations show that the thermoelectric efficiency is enhanced as the carbonator pressure and temperature are increased provided that the multicycle CaO conversion is not affected. On the other hand, the use of just one reactor for both calcination and carbonation has been suggested to reduce capital cost. However, the experimental results shown in the present work indicate that sintering is notably enhanced as the pressure in the reactor is increased. Such an adverse effect is mitigated for a ZrO2/CaCO3 composite with a low Zr content as compared to natural carbonates. These results are relevant to process simulations for better assessing the global efficiency of the CaL-CSP integration.


Junio, 2018 | DOI: 10.1021/acssuschemeng.8b00981

Room temperature synthesis of water-dispersible Ln(3+):CeF3 (Ln = Nd, Tb) nanoparticles with different morphology as bimodal probes for fluorescence and CT imaging


Gonzalez-Mancebo, D; Becerro, AI; Rojas, TC; Olivencia, A; Corral, A; Balcerzyk, M; Cantelar, E; Cusso, F; Ocana, M
Journal of Colloid and Interface Science, 520 (2018) 134-144

ABSTRACT

The singular properties of lanthanide-based inorganic nanoparticles (NPs) has raised the attention of the scientific community in biotechnological applications. In particular, those systems with two or more functionalities are especially interesting. In this work, an effective and commercially attractive procedure has been developed that renders uniform, water-dispersible Ln(3+):CeF3 (Ln = Tb, Nd) NPs with different shapes and size. The method consists of the homogeneous precipitation, in a mixture of polyol and water, of cations and anions using precursors that allow the controlled release of the latter. The advantages of the reported method are related to the absence of surfactants, dispersing agents or corrosive precursors as well as to the room temperature of the process. The obtained Tb:CeF3 NPs produce an intense emission after excitation through the Ce-Tb energy transfer band located in the UV spectral region, thus being potentially useful as phosphors for in-vitro imaging purposes. On the other hand, the synthesized Nd:CeF3 NPs are good candidates for in-vivo imaging because their excitation and emission wavelengths lie in the biological windows. Finally, the excellent X-ray attenuation efficacy of the Nd:CeF(3)NPs is shown, which confers double functionality to this material as both luminescence bioprobe and contrast agent for X-ray computed-tomography. 


Junio, 2018 | DOI: 10.1016/j.jcis.2018.03.007

Strong activation effect on a ru-co-c thin film catalyst for the hydrolysis of sodium borohydride


Arzac, GM; Paladini, M; Godinho, V; Beltran, AM; de Haro, MCJ; Fernandez, A
Scientific Reports, 8 (2018) art. 9755

ABSTRACT

In this work, we prepared a series of Ni foam supported Ru-Co, Ru-Co-B and Ru-Co-C catalysts in the form of columnar thin films by magnetron sputtering for the hydrolysis of sodium borohydride. We studied the activity and durability upon cycling. We found a strong activation effect for the Ru-Co-C sample which was the highest ever reported. This catalyst reached in the second cycle an activity 5 times higher than the initial (maximum activity 9310 ml.min(-1).g(CoRu)(-1) at 25 degrees C). Catalytic studies and characterization of the fresh and used samples permitted to attribute the strong activation effect to the following factors: (i) small column width and amorphous character (ii) the presence of Ru and (iii) dry state before each cycle. The presence of boron in the initial composition is detrimental to the durability. Our studies point out to the idea that after the first cycle the activity is controlled by surface Ru, which is the most active of the two metals. Apart from the activation effect, we found that catalysts deactivated in further cycles. We ascribed this effect to the loss of cobalt in the form of hydroxides, showing that deactivation was controlled by the chemistry of Co, the major surface metal component of the alloy. Alloying with Ru is beneficial for the activity but not for the durability, and this should be improved.


Junio, 2018 | DOI: 10.1038/s41598-018-28032-6

Understanding the differences in catalytic performance for hydrogen production of Ni and Co supported on mesoporous SBA-15


Rodriguez-Gomez, A; Pereniguez, R; Caballero, A
Catalysts, 307 (2018) 224-230

ABSTRACT

Three mono and bimetallic NixCo1-x/SBA-15 catalysts (x = 1, 0.5 and 0) with a total metallic content of 10 wt% have been prepared by a deposition-precipitation (DP) method. The catalytic performances on the dry reforming of methane reaction (DRM) have been determined and correlated with their physical and chemical state before and after the catalytic reaction. So, while the nickel monometallic system presents a high activity and stability in the DRM reaction, the Co/SBA-15 catalytic system turns out completely inactive. For its part, the Ni0.5Co0.5/SBA-15 has initially a catalytic performance similar to the Ni/SBA-15 monometallic system, but rapidly evolving to an inactive system, therefore resembling the behavior of the cobalt-based catalyst. The characterization by TEM and in situ XPS techniques has allowed us to ascribe these differences to the initial state of metallic particles after reduction and their different evolution under reaction conditions. So, while after reduction both nickel containing NixCo1-x/SBA-15 catalysts (x = 1 and 0.5) present a well dispersed metallic phase, the cobalt monometallic catalyst yields big metallic particles with a heterogeneous distribution of sizes. Additionally, unlike the Ni/SBA-15, the NiCo/SBA-15 system increases during reaction the metallic particle sizes. 

Besides indicating that the particle size is a major reason determining the catalytic performances, these results suggest that in the Ni-Co system both metals form after reduction a bimetallic phase mainly located inside the mesoporous channels of SBA-15 support. Under DRM reaction conditions, the cobalt is segregated to the surface of the bimetallic particles, which seems to determine the interaction with the support surface SBA-15. This feature gives rise to a much less stable metallic phase which suffers an important sintering process under DRM catalytic conditions. 


Junio, 2018 | DOI: 10.1016/j.cattod.2017.02.020

Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy


Velo, IL; Gotor, FJ; Alcala, MD; Real, C; Cordoba, JM
Journal of Alloys and Compounds, 746 (2018) 1-8

ABSTRACT

A high entropy alloy (HEA, CoCrFeNiMn) synthesized by mechanical alloying was used as the binder for the densification of WC by a pressureless high temperature procedure. Three different WC were used by modifying its microstructure with a high energy ball milling treatment. The alloy content in the HEA-WC mixture was varied from 10 to 30% vol. The microstructure and properties of the sintered composites were studied by X-ray diffraction, scanning electron microscopy and microindentation.


Mayo, 2018 | DOI: 10.1016/j.jallcom.2018.02.292

Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries


Murcia, J.J., Hernández-Laverde, M., Rojas, Muñoz, E., Navío, J.A., Hidalgo, M.C.
Journal of Photochemistry and Photobiology A: Chemistry, 358 (2018) 256-264

ABSTRACT

The aim of the present work was to evaluate the effectiveness of flocculation-photocatalysis as combined processes in the treatment of dairy industries wastewater. Different commercial and lab prepared flocculants and photocatalysts were evaluated. All the materials prepared were extensively characterized. Commercial materials presented the best physicochemical properties and performance in the treatment of the studied wastewater. On one hand, all the photocatalysts evaluated showed bactericidal activity for E. Coli, total coliforms and other enterobacteriaceae. Total elimination of E. coli was obtained by using commercial TiO2 P25 Evonik, under 120 W/m2 of UV–vis light intensity and 5 h of total illumination time. Other species of bacteria remained after treatment under these conditions. It was also found that the highest light intensity of 120 W/m2 led to increase the Chemical Oxygen Demand and Total Organic Carbon in the samples treated, it can be due to the faster formation of new organic compounds as intermediaries during the photocatalytic reactions at the highest photonic flux. Flocculation pre-treatment of the wastewater samples led to improve the effectiveness of the photocatalytic treatment; thus, the combination of flocculation-photocatalysis treatments at low light intensity of 30 W/m2 leads to achieve the total elimination of E. coli, and under this intensity the elimination of total coliforms and other enterobacteriaceae increased 5.48% compared to the photocatalytic treatment alone. These treatment conditions led to comply the Colombian regulations for dairy wastewater.


Mayo, 2018 | DOI: 10.1016/j.jphotochem.2018.03.034

Influence of the Mn content on the TiNbxMn alloys with a novel fcc structure


Chicardi, E; Aguilar, C; Sayagues, MJ; Garcia-Garrido, C
Journal of Alloys and Compounds, 746 (2018) 601-610

ABSTRACT

This work studies the structural evolution of TiNbxMn alloys (x: 0-12 wt%) synthetized by mechanical alloying in a planetary ball mill with different milling times between 1 h and 120 h. The specimens were characterized by X-ray diffraction patterns, scanning and transmission electron microscopies and Energy-dispersive X-ray spectroscopy. It was observed an evolution of the alloys developed from the raw Ti, Nb and Mn elements to bcc-TiNbxMn alloys and, finally, novel fcc-TiNbxMn alloys, with Fm3m space group symmetry, not previously observed. The presence of Mn promotes other interesting effects: a) the decreasing of the crystallite and the particle sizes, reaching values close to 4 nm and 400 nm, respectively, b) the partial amorphization of the fcc-TiNbxMn alloys due to the combined effect of the Mechanical Alloying and the difference of Mn atomic size in comparison with Ti and Nb and c) the presence of Mn that decreases the Fe amount (from milling media) in the as-milled powders. 


Mayo, 2018 | DOI: 10.1016/j.jallcom.2018.02.306

Crystallization Kinetics of Nanocrystalline Materials by Combined X-ray Diffraction and Differential Scanning Calorimetry Experiments


Gil-Gonzalez, E; Perejon, A; Sanchez-Jimenez, PE; Medina-Carrasco, S; Kupcik, J; Subrt, J; Criado, JM; Perez-Maqueda, LA
Crystal Growth & Design, 18 (2018) 3107-3116

ABSTRACT

Crystallization is one key aspect in the resulting properties of nanocrystalline functional materials, and much effort has been devoted to understanding the physical mechanisms involved in these processes as a function of temperature. The main problems associated with crystallization kinetic studies come from the limitations of the employed techniques, and the obtained results may vary significantly depending on the choice of the measurement method. In this work, a complete description of the thermal crystallization event of nanocrystalline BiFeO3 has been performed by combining the information obtained from three different experimental techniques: in situ high-temperature X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. Interestingly, the kinetic analysis of the X-ray diffraction and differential scanning calorimetry data yields almost identical results, although the physical properties measured by both techniques are different. This allows the unambiguous determination of the kinetic parameters. The importance of a proper definition of the conversion degree, which is limited by the employed measurement technique, is also highlighted.


Mayo, 2018 | DOI: 10.1021/acs.cgd.8b00241

Photo-induced processes on Nb2O5 synthesized by different procedures


Jaramillo-Páez, C., Sánchez-Fernández, F.J., Navío, J.A., Hidalgo, M.C.
Journal of Photochemistry and Photobiology A: Chemistry, 359 (2018) 40-52

ABSTRACT

The properties of Nb2O5 strongly depend on its synthesis procedure as well as the conditions of ulterior thermal treatment. We report the synthesis of Nb2O5 powders prepared by sol-gel precipitation method using niobium(V) ethoxide as precursor. Two chemical routes were chosen: the presence of tryethyl amine (TEA) as precipitant/template agent, or the oxidant peroxide method. In addition, microwave-assisted activation was also used. The as-prepared samples by the above procedures were amorphous. Structural changes upon heating from room temperature up to 800 °C were investigated by X-ray powder diffraction technique combined with thermogravimetric analysis. The sequential thermal treatment up to 800 °C promotes the crystallization of hexagonal phase to orthorhombic phase whereas the ulterior cooling to room temperature lead to a mixture of both phases. Samples calcined at selected temperatures of either 600 °C or 800 °C for 2 h, were characterized by XRD, SEM, N2-adsorption and diffuse reflectance spectroscopy (DRS). The synthetic approach routes as well as the combined microwave activation followed by ulterior thermal treatment lead to changes not only on particle size but also on the textural properties of the synthesized catalysts. The catalysts synthesized have been evaluated using Rhodamine B (RhB) as a substrate, under both UV and visible lighting conditions. None of the catalysts synthesized showed activity in the visible. Under UV-illumination conditions, some of the catalysts exhibited a relatively low photoactivity in the degradation of RhB, which is associated with a photo-sensitizing effect. However, the addition of Ag+ ions considerably increased the activity of all the catalysts in the degradation of RhB under UV-illumination conditions. A mechanism is proposed to explain the photo-induced processes obtained, leaving the door open to the possible implications of the observed results in relation to the interaction of RhB dye with noble metal nanoparticles such as silver.


Mayo, 2018 | DOI: 10.1016/j.jphotochem.2018.03.040

Páginas

icms