Menú secundario

Diseño de Nanomateriales y Microestructuras

Broad objectives:
New procedures to improve the control of the micro- and nanostructure of materials, Microstructural and chemical characterization in the nanoscale to understand the behaviour of materials
Specific objectives:
Development of nanostructured and nanocomposite coatings for mechanical, tribological and protective applications. Simulation of mechanical properties on nanostructured materials and correlation with the microstructural characterization and the experiment
Specific advantages
Very well positioned in the magnetron sputtering technology for deposition of nanostructured coatings for mechanical, tribological and protective applications, Very well positioned in the physical and chemical approach synthesis methodologies of nanostructured materials like sol-gel, colloidal synthesis and gas phase condensation, A multidisciplinary approach combining chemists, physicist and materials engineers. Experimental approach complemented by the incorporation of simulation and modelling. Strong simulation capabilities for mechanical properties of nanostructured materials, Strong experience in high resolution microscopies: Atomic force, transmission and scanning electron microscopies. Understanding of nanomaterials processes by controlling and determining the microstructure. Multitechnique approach (XPS, XAS, TEM/EELS, XRD), Line with strong participation in European projects

Cerámicas Nanoestructuradas a Base de Carburo de Boro y Nitruro de Titanio para Aplicaciones Estructurales



Investigador Principal: Diego Gómez García / Arturo Domínguez Rodríguez
Periodo: 01-01-2016 / 31-12-2019
Organismo Financiador: Ministerio de Economía y Competitividad
Código: MAT2015-71411-R
Componentes: Francisco L. Cumbreras Hernández, Felipe Gutíerrez Mora, Ana Morales Rodríguez

Resumen [+]

El proyecto tiene como misión la fabricación de forma controlada científicamente de nanocerámicos de carburo de boro y de nitruro de titanio mediante la técnica de chispa de plasma. Se estudiarán las propiedades mecánicas de ambos cerámicos a temperatura ambiente (dureza y tenacidad), así como su plasticidad a alta temperatura (resistencia a la fluencia, deformación a velocidad constante).

Se pretende estudiar la influencia de la microestructura en la respuesta mecánica, así como dilucidar los mecanismos que controlan la plasticidad (particularmente la interacción de dislocaciones con maclas). Los resultados se modelarán analíticamente o mediante simulación a escala mesoscópica (vía modelos de campos de fases).


Desarrollo de catalizadores soportados sobre estructuras porosas para aplicaciones de generación y combustión catalítica de hidrógeno en el contexto de energías renovables



Investigador Principal: Asunción Fernández Camacho
Periodo: 01-01-2016 / 31-12-2018
Organismo Financiador: Ministerio de Economía y Competitividad
Código: CTQ2015-65918-R
Componentes: Asunción Fernández, Mª Carmen Jiménez de Haro, Vanda Godinho, Gisela Arzac, Dirk Hufschmidt, Rocio García

Resumen [+]

El agotamiento de combustibles fósiles a corto y medio plazo y los cambios climáticos producidos por el efecto invernadero son algunas de las principales consecuencias del uso extendido de estos combustibles. En este escenario el hidrógeno como vector de transporte y almacenamiento de energía es un candidato muy atractivo en el contexto de un mayor uso de las energías renovables y limpias. En consecuencia se plantean actualmente retos importantes para el desarrollo de tecnologías adecuadas,  tanto en la producción de hidrógeno libre de CO2, como en su transporte y almacenamiento seguro, y en su combustión eficiente para producir calor ó electricidad en una pila de combustible. Sobre la base de los proyectos previos del grupo en el estudio de hidruros complejos para almacenamiento de hidrógeno y en el desarrollo de catalizadores y procesos integrados  de generación y uso del hidrógeno en aplicaciones portátiles; se abordarán en este proyecto nuevas investigaciones  para desarrollar catalizadores novedosos soportados sobre estructuras porosas: membranas y espumas de materiales poliméricos, metálicos y cerámicos de alto interés actual. Los catalizadores se desarrollarán y estudiarán en reacciones seleccionadas de generación y combustión de acuerdo a las siguientes líneas de actuación:

1) Desarrollo de materiales novedosos con alto valor añadido del conjunto soporte-catalizador. Por un lado los soportes porosos basados en membranas de PTFE, espumas metálicas de Ni y espumas cerámicas de SiC. El objetivo es desarrollar los nuevos catalizadores sobre soportes de interés  como membranas separadoras, electrolitos, electrodos ó combustores de hidrógeno. Los nuevos catalizadores persiguen la reducción del uso de metales nobles (i.e. bimetálicos Pt-Cu, Ni-Fe) y el desarrollo de nuevos materiales metal-metaloide (carburos, boruros, etc.). Se usarán métodos químicos de impregnación, y muy especialmente la tecnología de deposición de películas delgadas,  pulverizacón catódica, que hemos aplicado recientemente con éxito a la fabricación de catalizadores de Co. La metodología abre un campo de investigación de gran interés al permitirnos el control de la microestructura y/o la composición (i.e. Co, Co-B, Co-C) de los catalizadores a demanda.

2) La caracterización microestructural y química de los nuevos materiales y catalizadores desarrollados en el proyecto. Se trata típicamente de materiales con una microestructura y nanoestructura controlada en donde las modernas técnicas nanoscopicas van a jugar un papel fundamental en la fabricación a medida de estos.

3) Estudio de actividad en tres ensayos catalíticos: i) la generación hidrolítica de hidrógeno, ii) la descomposición fotocatalítica del agua y iii) la combustión catalítica del hidrógeno. Todas ellas reacciones de alto interés en el contexto del uso del hidrógeno como vector de transporte y almacenamiento de energías renovables.

--Sobre la base de los resultados obtenidos en estas líneas de actuación, el proyecto se ha diseñado para alcanzar un conocimiento fundamental y un diseño racional en la nanoescala de catalizadores soportados en sustratos porosos. Las relaciones composición-estructura-propiedades se investigarán usando los ensayos catalíticos y fotocatalíticos acoplados a la microscopía electrónica de alta resolución analítica y otras técnicas espectroscópicas.


Recubrimientos para aplicaciones en energía y alta temperatura



Investigador Principal: Juan Carlos Sánchez López
Periodo: 01-01-2016 / 31-12-2018
Organismo Financiador: Ministerio de Economía y Competitividad
Código: MAT2015-65539-P
Componentes: Iñigo Braceras Izaguirre (INASMET), Teresa Cristina Rojas Ruiz, Maria Belinda Sigüenza Carballo

Resumen [+]

La protección de las superficies frente a la temperatura, los fenómenos de oxidación o el desgaste ha logrado un progreso substancial mediante el desarrollo de nuevos materiales y recubrimientos con propiedades mejoradas tales como dureza extrema, baja fricción y tasas de desgaste, elevada resistencia ante la temperatura y la oxidación. Estas mejoras suponen un enorme ahorro de energía y reducción de costes debido a la vida media de los componentes mecánicos sin necesidad de sustitución, así como, a una reducción del impacto medioambiental. Este campo de investigación tiene una profunda repercusión en una gran variedad de sectores industriales (energía, herramientas de mecanizado, automoción, aeronáutico, metalurgia, etc.). El reto para la mayoría de estos procesos de funcionalización superficial residen en un control estricto de la micro y nanoestructura de la superficie y de las intercaras que hagan posible la aparición de nuevas propiedades y aplicaciones que la nanotecnología ofrece.

En este proyecto, se prepararán recubrimientos nanoestructurados para la protección de componentes sometidos a altas temperaturas y ambientes agresivos buscando un comportamiento mejorado. Este objetivo será abordado para tres diferentes aplicaciones que contribuirían a procesos energéticos más eficientes, energías renovables y soluciones para disminuir el impacto medioambiental. Basándonos en el sistema Cr-Al-N, se depositarán diferentes recubrimientos mediante la técnica de pulverización catódica reactiva cambiando la composición química (contenido en metal, incorporación de dopantes tales como Y o Si); microestructura; distribución de fases; arquitectura (multicapa/nanocomposite) o estructuras más complejas (tándem, multicapa en gradiente) sobre los sustratos apropiados dependiendo de la aplicación prevista: a) resistencia a la oxidación a alta temperatura (hasta 1000ºC) para herramientas; b) absorbedores solares selectivos estables térmicamente a medias (300-500ºC) y alta temperatura (>600ºC); resistencia a la corrosión para componentes en turbinas de vapor supercríticos (650ºC/100% vapor).

La investigación sobre los mecanismos de oxidación, transformaciones de fases, modificaciones estructurales, etc. serán objeto de un estudio detallado sobre los sustratos definidos para lograr un conocimiento fundamental sobre los procesos de degradación y los efectos protectores. El establecimiento de correlaciones entre las propiedades iniciales y el comportamiento funcional permitirá una mejor comprensión de los mecanismos de protección y por ende, una optimización de tales sistemas en forma de recubrimientos nanoestructurados para las aplicaciones previstas.

 

Palabras clave: Recubrimientos, alta temperatura, resistencia oxidación, corrosión, nanoestructurado, energía, absorbedor solar, multicapas


Procesado y caracterización microestructural, mecánica y eléctrica de compuestos cerámica-grafeno



Investigador Principal: Angela Gallardo López (UEI) / Rosalía Poyato Galán
Periodo: 01-01-2016 / 31-12-2018
Organismo Financiador: Ministerio de Economía y Competitividad
Código: MAT2015-67889-P
Componentes: Antonio Muñoz Bernabé, Felipe Gutiérrez Mora, Ana Morales Rodríguez

Resumen [+]

En la actualidad se plantean interesantes expectativas sobre los compuestos cerámica/grafeno, propuestos para aplicaciones en catálisis, almacenamiento y conversión de energía, protección del medio ambiente y biotecnología. Pero aún se requieren importantes esfuerzos para dar respuesta a cuestiones abiertas. Hay que incidir en aspectos como la resistencia a la cizalla de las intercaras cerámica-grafeno -esencial para asegurar la transferencia de carga efectiva sobre las láminas de grafeno-, la distribución homogénea del grafeno en la matriz cerámica y la relación de tamaños entre matriz y refuerzo, para maximizar el aumento de tenacidad y de conductividad eléctrica, así como también explorar sus propiedades mecánicas a alta temperatura.
En este proyecto se plantea un estudio sistemático de compuestos de matrices cerámicas con grafeno, desde la fabricación hasta la caracterización microestructural, mecánica y eléctrica, con el objetivo de mejorar la comprensión de los mecanismos que controlan estas propiedades al incorporar nanoestructuras de grafeno a una matriz cerámica. Se procesarán compuestos de dos matrices cerámicas diferentes, de alúmina y de circona tetragonal dopada con óxido de itrio (3YTZP), con grafeno mediante técnicas coloidales, prestando especial atención a la dispersión del grafeno en la matriz cerámica, aspecto no exento de dificultades y que es clave para conseguir la mejora de las propiedades. La sinterización se realizará en un horno de descarga de plasma (SPS, spark plasma sintering) de última generación, optimizando las condiciones para conseguir compuestos densos y de tamaño de grano nanométrico. Para el análisis microestructural se utilizarán técnicas como la difracción de rayos X, la espectroscopía Raman, y la microscopía electrónica de barrido y transmisión. Con ellas se evaluarán las fases cristalográficas presentes, el tamaño de grano, la distribución de las nanoestructuras de grafeno, etc.
Desde el punto de vista del diseño de materiales avanzados, es fundamental investigar la relación entre microestructura y propiedades mecánicas y eléctricas. Las propiedades mecánicas a temperatura ambiente (dureza, tenacidad a la fractura y resistencia a flexión) se abordarán mediante indentación y ensayos de flexión, a escalas macro y microscópica. A alta temperatura, se estudiará la deformación plástica de los compuestos cerámica-grafeno mediante ensayos de fluencia en atmósferas controladas. También se estudiará el comportamiento tribológico de los compuestos y se evaluará su conductividad eléctrica, una de las propiedades más interesantes ya que se modifica de forma notoria como resultado de la incorporación del grafeno a estos sistemas cerámicos. La respuesta eléctrica se analizará en un amplio rango de temperaturas, bien mediante espectroscopía de impedancia compleja, bien mediante medidas de conductividad en corriente continua en el caso de los compuestos menos resistivos. 


Aplicación de técnicas avanzadas de microscopía electrónica para la caracterización de recubrimientos nano-estructurados para aplicaciones en energías limpias



Investigador Principal: Ana María Beltrán Custodio
Periodo: 01-03-2015 / 28-02-2017
Organismo Financiador: Junta de Andalucía
Código: TAHUB-050. Programa Talent HUB
Componentes:

Resumen [+]

Este proyecto se centra en la generación y almacenamiento de hidrógeno con el objetivo de producir hidrógeno para energías limpias. Esto sucede durante una reacción exotérmica en la que es necesaria la presencia de un catalizador para que se lleve a cabo en condiciones de seguridad. Los catalizados basados en metales nobles son buenos candidatos para este objetivo (cobalto, cobre…). Aquí, los sistemas completos catalizador-soporte son estudiados. Estos sistemas son crecidos mediante técnicas de pulverización catódica (“magnetron sputtering”). La estructura y la composición son estudiadas a escala nanométrica mediante técnicas avanzadas de microscopía electrónica de transmisión-barrido (STEM), como la microscopía electrónica de alta resolución (HRTEM), imágenes adquiridas en modo campo oscuro con detector de alto ángulo (HAADF), energía dispersiva de rayos X, espectroscopia de pérdida de energía de electrones (EELS), para análisis químico. Además, el uso de la técnica de caracterización tridimensional, tomografía electrónica, aporta un completo conocimiento del sistema analizado. La combinación de técnicas de análisis estructural y de composición, en modo TEM y STEM, nos permite obtener una completa nano-caracterización del sistema. Estos análisis STEM son una herramienta esencial para determinar la relación entre la microestructura, las condiciones de crecimiento y el comportamiento final y las propiedades del sistema, que nos ayudará a mejorarlos y, por tanto, contribuir a la producción de energía limpia.

Este proyecto tiene cuatro objetivos estratégicos.

1. Nano-materiales para aplicaciones en energía limpia. Materiales para la producción, uso y almacenamiento de hidrógeno.
2. Desarrollo de la técnica de magnetron sputtering para la fabricación de nano‑estructuras (capas delgadas, recubrimientos y micro-estructuras multicapas).
3. Potenciación de las facilidades LANE (Laboratorio de microscopía del centro ICMSE-CSIC).
4. Uso de técnicas avanzadas de caracterización estructural y de análisis para el estudio a nano-escala de nuevos nano-materiales. 


Desarrollo de procesos de combustión catalítica de hidrógeno y estudio de su integración en dispositivos para aplicaciones portátiles



Investigador Principal: Asunción Fernández Camacho
Periodo: 16-05-2014 / 15-05-2016
Organismo Financiador: Junta de Andalucía
Código: P12-TEp-862
Componentes: Julián Martínez, Gisela Arzac, Dirk Hufschmidt, Joaquín Ramírez, M.Carmen Vera, Vanda Godinho, Lionel Cervera, T.Cristina Rojas, Olga Montes, Mariana Paladini, Jaime Caballero-Hernández

Resumen [+]

El hidrógeno como vector de transporte y almacenamiento de energía es un candidato muy atractivo en el contexto de un mayor uso de las energías renovables y limpias. La producción y el uso de la energía basada en la tecnología del hidrógeno es de especial relevancia en pequeña escala para aplicaciones portátiles (y potencialmente escalable para aplicaciones estacionarias). En el presente proyecto se abordará el estudio del proceso de combustión catalítica o controlada de hidrógeno en los distintos aspectos que puedan conducir a una configuración final integrada con un sistema de generación de H2 en aplicaciones portátiles. Para ello se aprovecharán las sinergias integrando investigadores de dos grupos del PAI: i) Del grupo TEP217, especialistas en almacenamiento y generación de hidrógeno en sistemas basados en hidruros metálicos, hidruros complejos y composites de hidruros reactivos; así como en el uso de catalizadores y aditivos para controlar y mejorar las cinéticas de estos procesos. ii) Del grupo FQM342, especialistas en la obtención de cerámicos porosos de alto interés como soportes de catalizadores en entornos agresivos de combustión. Además la colaboración se completa con la participación de la empresa Abengoa Hidrógeno S.A. que participa en calidad de subcontratada como especialistas en sistemas de producción y almacenamiento de hidrógeno.
En particular se trabajará en este proyecto en las siguientes líneas de actuación:
1.- Desarrollo de catalizadores y soportes para la combustión controlada. Típicamente cerámicas porosas biomórficas de carburo de silicio y catalizadores clásicos tipo metal noble y nuevos catalizadores de bajo coste a desarrollar en el proyecto.
2.- Desarrollo de los reactores necesarios para el estudio de la combustión controlada. Típicamente para flujos de hidrógeno de unos pocos ml/min y para la escala de un generador de H2 ya disponible de 0.5 a 1.5 L/min.
3.- Acoplamiento al sistema de combustión controlada de los sistemas portátiles de generación de hidrógeno que hemos desarrollado en proyectos anteriores.
4.- Aplicación de la tecnología de pulverización catódica de una manera exploratoria en este proyecto para depositar los catalizadores de combustión catalítica en sustratos porosos.
5.- Caracterización microestructural y química de los soportes y catalizadores en la nanoescala para seguir los procedimientos de síntesis y evolución en operación.
 


Desarrollo de nuevos materiales y procesos para la generación y uso del hidrógeno principalmente en aplicaciones portátiles



Investigador Principal: Asunción Fernández Camacho
Periodo: 01-01-2013 / 31-12-2015
Organismo Financiador: Ministerio de Economía y Competitividad
Código: CTQ2012-32519
Componentes: Gisela Arzac, Jaime Caballero, Lionel Cervera, Vanda Fortio, Carlos Negrete, Dirk Hufschmidt, Cristina Rojas Ruiz, Roland Schierholz

Resumen [+]

El hidrógeno como vector de transporte y almacenamiento de energía es un candidato muy atractivo en el contexto de un mayor uso de las energías renovables y limpias. En el presente proyecto se abordará el estudio de los distintos procesos que conducen a la configuración final integrada de sistemas de generación y uso del hidrógeno principalmente en aplicaciones portátiles (y potencialmente escalables para aplicaciones estacionarias). En particular se trabajará en este proyecto en las siguientes líneas de actuación:
a) Investigación en nuevos compuestos ligeros para su uso en procesos de generación de hidrógeno en pequeña escala por vía química (hidrólisis). Típicamente reacciones de hidrólisis de borohidruros (i.e. NaBH4) y compuestos tipo borano de amoníaco, hidrazinas ó borano hidrazina. Este area incluye el desarrollo de catalizadores en la nanoescala utilizando métodos de vía húmeda para su síntesis: Nanoestructuras metal-metaloide (tipo Co-B, Co-B-P y similares) y catalizadores bimetálicos (que incluyan ó no metaloide) de bajo coste potenciando efectos sinérgicos (tipo CoRu, NiPt ó Co-Ru-B). Incluye también el desarrollo de reactores portátiles para estos procesos y el desarrollo de nuevos sustratos y monolitos, estudios de adherencia del catalizador y durabilidad.
b) Investigación en nuevos sistemas anfitrión-huésped (host-guest) que contengan hidrógeno para el almacenamiento reversible (carga/descarga). Principalmente soportes (anfitrión) porosos del tipo “nanoscaffolds” (basados en C ó BN) infiltrados con borohidruros (huésped) (i.e. borohidruro de titanio) típicamente utilizados para el almacenamiento reversible de hidrógeno. Estos nuevos materiales deben presentar cinéticas de carga y descarga mejoradas.
c) Estudios de acoplamiento de un sistema generador de hidrógeno de bajo coste a una celda de combustible. Típicamente un reactor continúo para la hidrólisis del NaBH4 con catalizador Co-B que suministra H2 en condiciones de flujo constante para alimentar directamente una pila de combustible tipo PEM de 60 W.
d) Estudios fundamentales para el desarrollo de catalizadores y soportes para la combustión controlada de hidrógeno. Es una línea nueva en el grupo de investigación que se basa en preparar por vía húmeda catalizadores nanoparticulados de metal noble sobre soportes comerciales de cerámicas porosas (tipo SiC). Incluye el diseño de un reactor para el estudio en escala laboratorio de la producción de calor por combustión controlada de hidrógeno.
e) Desarrollo de la tecnología de pulverización catódica (“magnetrón sputtering”) para la preparación de catalizadores y nano-estructuras sobre diversos sustratos de aplicación en los procesos desarrollados en los apartados anteriores. El grupo tiene una amplia experiencia en esta tecnología que se aplicaría de manera novedosa en este proyecto permitiendo una gran versatilidad en cuanto a la nanoestructura, composición y aditivos para mejorar la actividad, durabilidad y selectividad de los catalizadores.
f) Caracterización microestructural y química de los nuevos materiales y catalizadores desarrollados en el proyecto. Se trata típicamente de materiales con una nanoestructura controlada en donde las modernas técnicas nanoscopicas van a jugar un papel fundamental en la fabricación a medida de estos materiales.
 


Desarrollo de recubrimientos nanoestructurados protectores para su uso en condiciones extremas (NANOPROTEXT)



Investigador Principal: Juan Carlos Sánchez López
Periodo: 01-01-2012 / 31-12-2014
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: MAT2011-29074-C02-01
Componentes: T. Cristina Rojas Ruiz; Francisco Javier Pérez Trujillo;Maria del Pilar Hierro de Bengoa;Germán Alcalá Penades; Maria Sonia Mato Díaz; Marta Brizuela; Pablo Corengia; José Luis Viviente; Alberto García;Daniel González

Resumen [+]

En muchas operaciones industriales, los componentes de las maquinas o piezas que están en contacto se hallan sometidos a condiciones extremas de carga, fricción, temperatura o atmósfera variable. La investigación dirige sus esfuerzos hacia al desarrollo de nuevos recubrimientos multicomponentes capaces de aumentar su eficiencia protegiendo su superficie contra el desgaste y la oxidación, que ocasionan fallos ulteriores de funcionamiento. Mediante el control del tamaño y distribución de las fases componentes, la composición química y su microestructura en el rango nanométrico es posible obtener propiedades multifuncionales tales como baja fricción, dureza y estabilidad térmica.
En este proyecto se propone el desarrollo de tres tipos de recubrimientos nanoestructurados mediante el proceso de magnetron sputtering para aplicaciones protectoras en condiciones extremas o singulares de funcionamiento (presión, temperatura, atmósferas oxidantes, vacío, etc). Los sistemas elegidos comprenden cristales de materiales duros (nitruros o carburos) combinados con una segunda fase o elemento que mejore su comportamiento. De este modo se ensayarán recubrimientos nanocomposite formados por nanocristales de WC dispersos en una segunda fase amorfa de tipo calcogenuro (WS2 or WSe2) para su uso como lubricante sólido en aplicaciones espaciales o bajo atmósferas inertes. En el segundo caso, Y ó Zr serán usados como elementos dopantes dentro de recubrimientos de CrAlN con objeto de incrementar la resistencia a la oxidación a baja y alta temperatura, y el comportamiento tribológico, muy válido en numerosos sectores industriales tales como (herramientas de mecanizado, metalúrgico, aeronaútico, automoción, etc.). Finalmente, se desarrollaran recubrimientos nanocomposite duros y transparentes basados en la familia del Al-Si-N para protección de sistemas ópticos.
En todos los casos, el proyecto comprende su síntesis, caracterización estructural y química, así como su validación práctica en ensayos tribológicos y de oxidación que simulan las condiciones finales de operación. En el caso concreto de las capas duras y transparentes también se evaluarán sus propiedades ópticas. El estudio de la relación existente entre la microestructura y las propiedades medidas será un objetivo esencial puesto que permitirá una mayor comprensión de los mecanismos de actuación, y por ende, la optimización de tales sistemas nanoestructurados para su mejor aprovechamiento tecnológico.
 


Estudio de las interacciones intermoleculares entre hidroxiacidos carboxilicos de cadena larga como modelo para el diseño de poliesteres biomimeticos



Investigador Principal: José Jesús Benítez Jiménez
Periodo: 01-01-2012 / 31-12-2014
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: CTQ2011-24299
Componentes: Alejandro Heredia Guerrero, Miguel Angel San Mibuel Barrera, Jaime Oviedo López, Miguel Salmerón Batalle

Resumen [+]

El objetivo de este proyecto de investigación es el estudio y determinación de las interacciones que se ponen de manifiesto entre las moléculas de ácidos carboxílicos lineales de cadena larga en función del nivel y tipo de funcionalización con grupos hidroxilos. Para ello se proponen sistemas modelos basados en capas autoensambladas de estas moléculas sobre un soporte plano de baja energía de interacción para que sean las propias interacciones intrermoleculares las que condicionen la estructura del empaquetamiento. La metodología de estudio de estos sistemas confinados combinará, fundamentalmente, las microscopías de sonda de proximidad, las simulaciones atomísticas de dinámica molecular y el análisis químico por espectroscopía infrarroja. La información fundamental obtenida se empleará para el diseño de una ruta de síntesis química de poliésteres miméticos a la cutina vegetal, un biopolímero de barrera hidrófobo, inocúo y completamente biodegradable. Se determinarán las propiedades físicas (mecánicas, permeabilidad, de transporte iónico, etc…) y químicas (grado de esterificación, degradabilidad, etc…) de estos materiales sintéticos y se relacionarán con sus estructuras primarias (red de enlaces ester) y secundarias (interacciones por puente de hidrógeno entre grupos hidroxilos  remanentes). A partir de esta relación estructura-función, se modificará el protocolo de síntesis empleando elementos no propagadoras del  entrecruzamiento de la red primaria (moléculas con bajo grado de hidroxilación) y modificadores de de la red secundaria (ácidos carboxílicos con distinto grado de hidroxilación), con vistas a la obtención de polímeros con propiedades “a la carta”. Finalmente, se explorará el potencial de  aplicación de estos poliésteres sintéticos como sustitutos de plásticos obtenidos a partir de hidrocarburos con vistas a reducir residuos, tanto en el proceso de fabricación como los asociados a su desecho.


Laboratorio avanzado para el análisis de nanomateriales funcionales



Investigador Principal: María Asunción Fernández Camacho
Periodo: 01-10-2011 / 30-03-2015
Organismo Financiador: Unión Europea
Código: REGPOT-CT-2011-285895
Componentes: T. Cristina Rojas, M.Carmen Jiménez, Gisela Arzac, Olga Montes, Inmaculada Rosa, Rafael Alvarez, Vanda Godinho, Juan Carlos Sánchez-López, Hernán Míguez, Agustín R. González-Elipe, Manuel Ocaña, M. Jesús Sayagués, Lionel Cervera, Roland Schierholz, Salah Rouillon, Lucia Castillo, Rocío García, Carlos García-Negrete, Jaime Caballero

Resumen [+]

El proyecto AL-NANOFUNC ha sido diseñado para poner en marcha en el Instituto de Ciencia de los Materiales de Sevilla (ICMS, CSIC-Univ.Sevilla, España) un laboratorio avanzado para el Nano-análisis de nuevos materiales funcionales. Las técnicas de Nanoscopía avanzada, basadas en equipos de microscopía electrónica de última generación, se dedicarán a la investigación de vanguardia en temas específicos de gran interés: i) Nanomateriales para aplicaciones energéticas sostenibles; ii) películas delgadas multifuncionales y recubrimientos nanoestructurados; iii) materiales nano-estructurados para fotónica y sensores. Para situar a los laboratorios del ICMS en una posición de liderazgo que sea competiti-va en un escenario mundial, el proyecto AL-NANOFUNC contempla la puesta al día del poten-cial investigador actual en varias direcciones: i) Mejorar las capacidades de equipamiento en relación a la microscopía electrónica analítica de alta resolución; ii) mejorar el impacto de la investigación básica a través de la contratación de investigadores especializados y el intercambio transnacional con los centros de referencia en Europa, iii) desarrollar y mejorar el potencial de innovación de la investigación del ICMS abriendo las nuevas instalaciones a empresas y centros relacionados; iv ) organizar talleres, conferencias y actividades de difusión para mejorar la visibilidad de la investigación. En el proyecto se propone también una estrecha colaboración con centros de referencia y empresas de Lieja (Bélgica), Graz (Austria), Jülich (Alemania), Oxford (Inglaterra), Cambridge (Inglaterra), Dübendorf (Suiza) y Rabat (Marruecos), así como con laboratorios de Universidades Andaluzas. Cinco empresas en Andalucía colaborarán también en estrecha sinergia para promover las líneas estratégicas de interés a largo plazo de la región en los productos de piedra natural y artificial y los sectores de energía solar y energías renovables.


Recubrimientos nanoestructurados para operar en vacío



Investigador Principal: Juan Carlos Sánchez López
Periodo: 01-10-2011 / 31-12-2011
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: MAT2010-21597-C02-01
Componentes: T. Cristina Rojas Ruiz, Santiago Domínguez Meister

Resumen [+]

En este proyecto se desarrollarán recubrimientos nanoestructurados por la técnica de magnetron sputtering para lubricación de componentes mecánicos en aplicaciones aeroespa-ciales. Estos materiales deben proporcionar protección frente al desgaste y baja fricción cuando se usen en condiciones atmosféricas o vacío. Los sistemas elegidos para lograr este compromiso están formados por nanocristales de WC dispersados en una fase amorfa de dicalcogenuro (WS2 or WSe2). Estos lubricantes se esperan que pueden mejorar la resistencia al desgaste, mecánica y a la oxidación en comparación con los recubrimientos convencionales (MoS2 or DLC) usados para estos fines.


Desarrollo de recubrimientos composite de carbono para aplicaciones biomédicas



Investigador Principal: Juan Carlos Sánchez López
Periodo: 15-03-2011 / 15-03-2014
Organismo Financiador: Junta de Andalucía
Código: P10-TEP 06782
Componentes: T. Cristina Rojas, Carlos López Cartes, David Abad, Vanda Godinho, Santiago Domínguez, Inmaculada Rosa

Resumen [+]

El proyecto comprende el desarrollo de recubrimientos basados en carbono desde su síntesis a medida, caracterización, evaluación en tests de desgaste y estudios de biocompatibilidad para su uso en implantes artificiales. El control del tipo de enlace químico del carbono (sp2/sp3) y la composición química, incluyendo metales como (Ag, Ti) u otros elementos (B, N, O), permitirá modular las propiedades mecánicas y tribológicas (dureza, fricción y resistencia al desgaste) con objeto de incrementar su comportamiento final. Para ello se propone el empleo de la técnica de pulverización catódica (del inglés magnetron sputtering) para depositar estos recubrimientos avanzados sobre los materiales usados en los implantes (acero, aleaciones de Ti o polímeros) bajo diferentes condiciones de síntesis. Seguidamente, éstos composites de carbono serán evaluados de forma comparativa en ensayos de fricción y desgaste que simulen las condiciones que estos materiales se encontrarán en la aplicación final. De esta manera será posible establecer una correlación entre el comportamiento observado y las características químicas y estructurales de las capas preparadas bajo diferentes condiciones de síntesis. Finalmente, la biocompatibilidad será estudiada en ensayos de adhesión celular, citotoxicidad y actividad antibacteriana. Este completo conjunto de análisis aportará una excelente perspectiva de las posibilidades de transferencia tecnológica de estos materiales avanzados a la biomedicina.


Nanopartículas funcionalizadas para aplicaciones de hipertermia y evaluación de su ecotoxicidad



Investigador Principal: Asunción Fernández Camacho
Periodo: 03-02-2010 / 02-02-2013
Organismo Financiador: Junta de Andalucía
Código: P09-FQM-4554
Componentes: J. Blasco, M. Hampel, Carlos López, L.M. Lubián, I. Moreno, Miguel Angel Muñoz, David Philippon, T. Cristina Rojas, Inmaculada Rosa, Carlos García-Negrete

Resumen [+]

En este Proyecto de Excelencia se parte de la experiencia previa del grupo TEP-217 en el desarrollo y caracterización de nanopartículas funcionalizadas potencialmente biocompatibles y se pretende avanzar en cuatro direcciones. a) Continuar con el desarrollo de nanopartículas basadas principalmente en Au, Ag y óxidos magnéticos con distintas funcionalizaciones y microestructura. b) Profundizar en la fisico-química de su interacción con campos electromagnéticos (en un amplio rango de frecuencias desde kHz a GHz) para producir calentamientos localizados. Actualmente se han propuesto distintos mecanismos (corrientes inducidas, histéresis, relajación de momentos magnéticos y movimiento browniano) sin que existan todavía suficientes datos para comprender e interpretar los resultados experimentales. c) Establecer una colaboración multidisciplinar con el grupo RNM-306, especialista en ensayos de ecotoxicidad, que permita mejorar el conocimiento del impacto ambiental de las nanopartículas (principalmente de oro y plata) en los ecosistemas marinos, que son el sumidero final de una buena parte de los nanomateriales producidos en la actualidad. d) Realizar estudios preliminares de la toxicidad de las nanopartículas en función del campo electromagnético aplicado. En cualquier proyecto dedicado a la nanotecnología resulta extremadamente valioso introducir estudios que nos permitan determinar el impacto toxicológico y ambiental de los nuevos materiales que se están desarrollando en la actualidad.

Un objetivo fundamental de este proyecto es la formación de personal investigador a través de la realización de una Tesis Doctoral en el Instituto de Ciencia de Materiales de Sevilla.


Acoplamiento dinámica de fronteras de grano - segregación de impurezas en policristales nanoestructurados: aplicación a la circonia tetragonal dopada con itrio policristalina (YTZP)



Investigador Principal: Diego Gómez García
Periodo: 01/01/2010 – 31/12/2012
Organismo Financiador: Ministerio de Educación y Ciencia
Código: MAT2009-14351-C02-01
Componentes: Francisco Luis Cumbrera Hernández (USE), Arturo Domínguez Rodríguez (USE), Robert Luis González Romero (becario AECID)

Resumen [+]

El proyecto que se presenta estudiará, mediante simulación por ordenador a distintas escalas, la evolución microestructural de un policristal a temperatura constante y bajo la apli-cación de un campo de tensiones mecánicas; en particular, se prestará especial atención a los sistemas nanométricos. Para abordar con rigor este problema es indispensable conocer la ley de movilidad de las fronteras de grano en función de la temperatura y de las tensiones locales. En presencia de impurezas, esta ley depende crucialmente de la concentración de especies atómicas segregadas en dichas fronteras y su evolución durante el régimen dinámico (i. e. durante la deformación). A su vez, la segregación se ve alterada por el propio movimiento de la frontera de grano, de modo que ambos fenómenos están acoplados entre sí. El estudio de la segregación se realizará mediante simulación por Dinámica Molecular (DM); asimismo, se utilizará la DM para caracterizar la movilidad de una única frontera de grano conteniendo impurezas. Estos datos serán empleados en un modelo mesoscópico que se usará para estudiar la dinámica de un conjunto de granos de tamaño nanométrico y, por ende, la plasticidad de este sistema policristalino modelo. El objetivo último de este proyecto es el de determinar la ley de evolución de los cen-tros de masas de los granos para obtener, previo tratamiento estadístico, la ley constitutiva para la plasticidad en un policristal nanométrico. Esta ley macroscópica se contrastará final-mente con resultados experimentales en el sistema itria-zirconia policristalino (YTZP) nanométrico, en el que el equipo ha adquirido amplia experiencia en los últimos años.


Papel de los aditivos en los sistemas composites de hidruros metálicos reactivos para almacenamiento de hidrógeno



Investigador Principal: Asunción Fernández Camacho
Periodo: 01/01/2010 - 31/12/2012
Organismo Financiador: Ministerio de Educación y Ciencia
Código: CTQ2009-13440
Componentes: Carlos López, Cristina Rojas Ruiz, Gisela Arzac, Dirk Hufschmidt, Raimondo Ceccini, Emilie Deprez

Resumen [+]

Dada la problemática actual por el agotamiento a corto-medio plazo de los combusti-bles fósiles y los cambios climáticos causados por el efecto invernadero, se hace necesaria la reconsideración de una política energética global. El hidrógeno como vector de transporte y almacenamiento de energía es un candidato muy atractivo por tratarse de una alternativa viable y limpia. En el presente proyecto se propone el estudio de los llamados sistemas composites de hidruros reactivos (RHC) para almacenamiento de hidrógeno. Estos sistemas se basan en acoplar un hidruro metálico sencillo (i.e. MgH2) con un hidruro complejo (típicamente un compuesto borohidruro, i.e LiBH4) para dar una reacción reversible que produce o consume hidrógeno. El sistema puede así usarse como material para almacenamiento de hidrógeno de acuerdo a la siguiente reacción: MgH2+2LiBH4 ↔ MgB2+LiH+4H2 (11.4 wt% capacidad de almacenamiento de hidrógeno). La reacción mejora el balance de calor, en comparación con el MgH2 puro, al reducir la liberación de calor durante el proceso de carga. Para mejorar los aspectos cinéticos (reducción de las temperaturas y tiempos de operación) se ha propuesto el uso de catalizadores y/o aditivos. El principal objetivo del proyecto es comprender el papel de estos aditivos para mejorar las cinéticas de sorción de hidrógeno. En particular se han seleccionado como aditivos para este estudio los productos comerciales Ti-Isopropoxide (TiO4C12H28), TiO2 y VCl3 . También se prepararan en nuestro laboratorio otros catalizadores como Co3B, Ni3B o RuCo que igualmente se ensayarán. Los sistemas se prepararán y activarán por molienda de alta energía de los dos mate-riales hidruros molidos juntos con ó sin aditivos (5-10 mol%). Los estudios cinéticos se llevarán a cabo a través de medidas de sorción gravimétrica y volumétrica de hidrógeno (desorción o absorción vs. tiempo a T constante) y de la calorimetría de barrido diferencial (DSC). Se llevará también a cabo un estudio exhaustivo de caracterización microestructural y química de los sistemas en las diferentes etapas (tras la molienda, desorbidos y re-absorbidos) con las si-guientes técnicas: Difracción de rayos X (XRD), microscopía electrónica de transmisión (TEM) acoplada al análisis EDX (energía dispersiva de rayos X) y EELS (espectroscopía de pérdida de energía de electrones), espectroscopía de fotoemisión (XPS) y espectroscopía de absorción de rayos X (XAS). El estudio comparativo de las muestras con y sin aditivos y la correlación entre los estudios cinéticos y el análisis microestructural y químico, deben clarificar el mecanismo de la mejora cinética producida por los aditivos. Estos mecanismos están a día de hoy lejos de ser comprendidos. Sobre la base del conocimiento adquirido se espera mejorar de manera significativa estos sistemas en relación a sus aplicaciones para almacenamiento de hidrógeno.


Estructura, empaquetamiento y propiedades tribológicas de monocapas autoensambladas de alquilaminas lineales de cadena larga



Investigador Principal: José Jesús Benítez Jiménez
Periodo: 01-01-2009 / 31-12-2011
Organismo Financiador: Ministerio de Ciencia y Tecnología
Código: CTQ2008-00188
Componentes: Miguel Salmerón, Eduardo Garzón Garzón, Pedro J. Sánchez Soto, J. Alejandro Heredia Guerrero

Resumen [+]

El presente proyecto se encuadra en la línea de investigación que analiza las propiedades tribológicas de monocapas autoensamblas. Más concretamente en la contribución de eventos a escala molecular en la propiedades fricciónales de sistemas modelos a base de monocapas autoensambladas de moléculas alquílicas. La información de que se dispone para sistemas modelo a base de tioles sobre oro y alquisilanos sobre mica empleando técnicas de sonda de proximidad, fundamentalmente AFM (atomic force microscopy), es muy amplia. La aportación que proporciona este proyecto es más novedosa y parte del empleo de otro sistema modelo, alquilaminas de cadena larga sobre mica. La interacción del grupo funcional amino con el soporte mica es considerablemente menor que la propia del tiol-oro y el silano-mica lo que se traduce en una menor calidad del empaquetamiento molecular. El control de la calidad del empaquetamiento mediante el ajuste de las condiciones de preparación permitiría disponer de un sistema con gran contenido de defectos sobre el que establecer la influencia de éstos en las propiedades friccionales. La consistencia mecánica de las capas de alquilaminas sobre mica impide su resolución estructural a nivel molecular empleando el microscopio AFM en modo de contacto, por lo que se propone una metodología que englobe y complemente el característico análisis friccional y la microscopia SPFM (scanning polarization force microsco-py). La técnica SPFM se basa en la medida de la fuerza electrostática que se establece entre una sonda polarizada y las cargas, dipolos permanentes o inducidos a nivel superficial. Dadas las marcadas diferencias entre las magnitudes dieléctricas de la mica y la monocapa alquílica, la metodología propuesta parte del análisis del efecto de pantalla de la capa autoensamblada sobre la señal en polarización del soporte y su relación con el grado de compactación de ésta. La técnica SPFM es especialmente sensible a la presencia de agua dado su elevada constante dieléctrica por lo que resulta muy adecuada para la detección de vacantes o intersticios sus-ceptibles de adsorber agua en el seno de la capa autoensamblada. En último extremo, el pro-yecto tiene por objeto la correlación de las propiedades friccionales con la evaluación SPFM del grado de empaquetamiento de las capas preparadas.


Estudio de la viabilidad de procesos de carbonatación de CO2 mediante compuestos tipo Wollastonita para su aplicación en procesos industriales de captura y reutilización de CO2



Investigador Principal: Luis Esquivias Fedriani
Periodo: 01/01/2009 – 31/12/2011
Organismo Financiador: Ministerio de Educación y Ciencia
Código: CIT-44000-209-1
Componentes: Alberto Santos Sánchez, Víctor Morales Flórez, Cristián Cárdenas Escudero, Laura Pereda Briones

Resumen [+]

El proyecto Wollastonita aborda el reto actual de reducir las emisiones de dióxido de carbono asociadas a los procesos energéticos e industriales. Es por ello que su principal consiste en el desarrollo de un sistema capaz de capturar grandes cantidades de CO2 y otros gases de efecto invernadero (GEI) de misión localizada, típicamente plantas térmicas de generación de energía eléctrica u cementeras, escalable a nivel industrial. Con la realización de este Proyecto se tratará por una parte de analizar la viabilidad técnica y económica de los procesos de secuestro de CO2 mediante compuestos de sílice y calcio, como es el caso de la wollastonita, y por otra parte, se tratarán de identificar las especificaciones requeridas para el diseño de un sistema integrado de captura y secuestro de CO2 aplicado a una instalación industrial generadora de grandes cantidades de este gas. Dado que el subproducto de la carbonatación puede ser un mineral valioso, medioambientalmente seguro y termodinámicamente estable, este puede ser reutilizado como materia prima en determinados procesos industriales, dependiendo de su morfología, pureza y tamaño de partícula. Por ello, se estudiarán las posibles aplicaciones de este producto, tratando de establecer en cada caso la relación coste/beneficio. Estas posibilidades supondrían el hecho de conseguir un ciclo completo para el proyecto, desarrollando un proceso viable para la reducción de los GEI y su eliminación o reutilización completa ulterior.


Desarrollo y diseminación de nuevas técnicas de caracterización nanomecánica y standars



Investigador Principal: Asunción Fernández Camacho
Periodo: 01-09-2008 / 31-08-2011
Organismo Financiador: Unión Europea
Código: NMP3-CA-2008-218659
Componentes: Godinho, V., Philippon, D.

Resumen [+]

El proyecto se dedica al desarrollo, mejora, y standarización de las técnicas de caracterización, los métodos y los equipos en los ensayos nano-mecánicos. Las actividades a nivel Europeo, coordinadas por un centro virtual, mejorarán la metrología de nanoindentación actual y permitirán un conocimiento más profundo de la relación estructura-propiedades en la nano-escala. Estos métodos son una herramienta única para caracterizar el comportamiento mecánico en la nanoescala de nanocomposites, nanocapas e interfases. Este trabajo también producirá una base sólida para definer y preparer nuevos standards que soporten la metodología de caracterización de los nanomateriales. Las etapas incluyen el desarrollo de los métodos clásicos de nanoindentación dinámica y su aplicación a campos nuevos como el rayado y las medidas de desgaste y la aplicación de nano-indentadores modificados. También se trabajará en la determinación uniforme de los parámetros instrumentals y en la definición de standards par alas nuevas aplicaciones. El centro virtual diseminará la información sobre la base de una nueva "base de datos para la caracterización Nano-mecánica". Esto se conseguirá a través de los trabajos de "round robin" entre los socios é incluirá igualmente datos de de otras fuentes de investigación y la búsqueda bibliográfica.


Recubrimientos nanoestructurados multifuncionales para aplicaciones mecánicas y tribológicas (NANOMETRIB)



Investigador Principal: Juan Carlos Sánchez López
Periodo: 01-10-2007 / 30-09-2011
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: MAT2007-66881-C02-01
Componentes: Asunción Fernández Camacho, Cristina Fernández, Miguel Angel Muñoz-Márquez, Said El Mrabet, Vanda Godinho, M. David Abad

Resumen [+]

En el campo de las aplicaciones mecánicas y tribológicas, las investigaciones se dirigen al desarrollo de nuevos sistemas que consigan aumentar la eficiencia de operaciones industriales, equipos o herramientas mediante el incremento de la dureza, la reducción de la fricción y la velocidad del desgaste de los materiales en contacto o la resistencia a la oxidación. Estas mejoras suponen un ingente ahorro económico y energético al alargar la vida media de los materiales sin necesidad de su reparación o cambio, como también, una reducción del empleo de emulsiones lubricantes con aceites o grasas. Este proyecto se propone el desarrollo de nuevos recubrimientos nanoestructurados multifuncionales por la técnica de PVD-Magnetron Sputtering para aplicaciones mecánicas y tribológicas en los que se alcance un equilibrado compromiso entre todas las propiedades mencionadas de fricción, dureza, estabilidad térmica. La combinación de múltiples funciones en un mismo material dota de un extraordinario valor añadido al sistema. Para lograr este objetivo general se van a preparar recubrimientos caracterizados donde el tamaño y distribución de las fases componentes, la composición química y su microestructura estén confinados en el rango nanométrico. Los sistemas elegidos comprenden cristales de materiales duros (nitruros, carburos o boruros de metales de transición: Cr, Ti, W) que pueden estar rodeados de una segunda fase que actúe como lubricante a base de C o dicalcogenuros de W) y dopados con ciertos metales para incrementar su resistencia térmica (V ó Nb). En todos los casos, el proyecto comprende su síntesis, caracterización estructural y química, así como su validación práctica en ensayos mecánicos y tribológicos. El estudio de la relación existente entre la microestructura y las propiedades medidas será un objetivo esencial puesto que permitirá una mayor comprensión de los mecanismos de actuación, y por ende, la optimización de tales sistemas nanoestructurados para su mejor aprovechamiento tecnológico.


icms