Menú secundario

Proyectos de Investigación

Conversión Avanzada de Biogas a Ácido Acético: Soluciones Catalíticas para una Sociedad con Bajas Emisiones de Carbono




01-10-2020 / 30-09-2023



Investigador Principal: Laura Pastor Pérez
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PID2019-108502RJ-I00
Grupo de Investigación: Química de Superficies y Catálisis

En ADVENTURE se presenta un nuevo concepto para convertir biogás, procedente de desechos orgánicos, en productos químicos de alto valor industrial, como es el ácido acético (AA), de una manera tanto amigable con el medio ambiente como viable económicamente. El AA se emplea como precursor de muchos productos procedentes de la química fina, con numerosas aplicaciones, como son la fabricación de pinturas y recubrimientos, la producción de plásticos y adhesivos basados en agua, entre muchos otros, siendo una molécula plataforma muy versátil para la industria química. Tradicionalmente el AA se produce a escala comercial a través de una ruta indirecta produciendo una considerable huella global de CO2. Por ello, el objetivo principal de ADVENTURE es re-diseñar el proceso de producción de AA introduciendo biogás como principal materia prima - un enfoque completamente nuevo que provoca una sinergia entre la utilización de CO2 y la síntesis de química fina.

En este contexto AVENTURE abordará tres desafíos principales: (i) un desafío global: las preocupaciones ambientales asociadas con la emisión de gases de efecto invernadero; (ii) una oportunidad industrial: abordará el problema de la sostenibilidad económica de la industria del biogás ofreciendo alternativas viables para la conversión de materia prima de bajo valor en bio-químicos de alto valor añadido a escala industrial; y (iii) un desafío a escala científica fundamental: se presentan dos propuestas, la intensificación de una ruta indirecta usando reactores de microcanales y una ruta directa llevada a cabo con catálisis por plasma. Para lograr estos ambiciosos objetivos, se diseñará una nueva generación de catalizadores avanzados multifuncionales capaces de proporcionar los productos específicos deseados con alta actividad, selectividad y durabilidad a largo plazo para garantizar el éxito de AVENTURE.


Estructuras adaptativas multiresponsivas para fotónica integrada, piezo/tribotronica y monitorización optofluídica | AdFunc




01-06-2020 / 31-05-2023



Investigador Principal: Angel Barranco Quero / Ana Isabel Borrás Martos
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PID2019-110430GB-C21 - Proyectos I+D+i "Generación de Conocimiento"
Componentes: José Cotrino Bautista, Victor J. Rico Gavira, Francisco Yubero Valencia, Juan Pedro Espinós Manzorro, Agustín R. González-Elipe
Grupo de Investigación: Nanotecnología en Superficies y Plasma

AdFUNC es un proyecto muy interdisciplinar que tiene como principal objetivo conseguir un progreso significativo en dos temáticas en la frontera de la Ciencia de Materiales: el desarrollo de sensores con capacidad multirespuesta y de sistemas de energía activados por luz. Los denominadores comunes de AdFUNC son el diseño inteligente de arquitecturas complejas en la nanoescala y el desarrollo de demostradores a escala de laboratorio.

Estamos convencidos de que el proyecto nos abre una ventana de oportunidad para realizar investigaciones que podemos clasificar en cuatro áreas: i) Aplicaciones y dispositivos: Desarrollaremos los recientemente descubiertos efectos tribotrónicos y piezotrónicos para fabricar dispositivos sensores autoalimentados. Con estos materiales, en combinación con varias tecnologías avanzadas de sensado fotónico y espectro-electroquímico, expandiremos la eficiencia, multiactuación y multirespuesta de sistemas adaptativos optofluídicos. Estos sistemas, manteniendo una arquitectura común, presentarán una respuesta diferenciada frente a escenarios reales diversos y complejos, que se simularán en el proyecto (alteraciones medioambientales como vertidos, accidentes, amenazas químicas o de explosivos). También se plantean dispositivos captadores de energía solar en condiciones de baja iluminación, captadores de energía mecánica y dispositivos que sean capaces de acoplar luz y movimiento a la activación de procesos de descomposición electroquímica del agua. Ii) Nanomateriales: Adfunc es un proyecto donde concurren un equipo de especialistas en el desarrollo de nanoestructuras soportadas por distintas tecnologías. Esto nos permitirá, por primera vez, implementar un conjunto de nanoarquitecturas 3D (nanohilos, nanotubos, core@shell) y el diseño de materiales con estructuras nanoporosas controladas (capas esculturales, nanocanales, porosidad asociada en varias escalas, multicapas ópticas porosas, desarrollos pioneros de redes metaloorgánicas (MOFs) en estructuras fotónicas porosas) directamente a la mejora de los componentes activos de los dispositivos del proyecto. Iii) Estrategia. El proyecto nos da la oportunidad de trabajar simultáneamente en rutas sintéticas nuevas, caracterización avanzada de materiales y propiedades, integración de materiales en dispositivos, y esto a la vez que se tiene información de modelado y simulación. Iv) Perspectiva de escalabilidad: En todos los casos se utilizarán métodos y técnicas compatibles con procesos industriales establecidos, como el plasma y el vacío típicos de la industria optoelectrónica y microelectrónica, y procesos de síntesis en disolución. Otro aspecto interesante, es la posibilidad de introducir plásticos y polímeros para fabricar dispositivos, lo que puede permitir revalorizar residuos de la industria del plástico, en un esfuerzo de economía circular en el que investigadores del proyecto están comprometidos.

AdFunc sólo es posible gracias al esfuerzo conjunto de un gran número de investigadores, en su mayoría del ICMS-CSIC y la Universidad Pablo de Olavide, que se completa con un grupo de investigadores de otros centros y colaboradores internacionales con experiencia e interés complementarios. Es precisamente la coordinación de un número tan elevado de especialistas (25 doctores en los dos subproyectos) lo que nos permite plantear el desarrollo de un conjunto de actividades tan completo y ambicioso.  


Recubrimientos innovadores preparados por Magnetron Sputtering para absorción solar selectiva




01-06-2020 / 31-12-2024



Investigador Principal: Juan Carlos Sánchez López / Ramón Escobar Galindo (Abengoa Solar New Tecnologies, S.A.)
Organismo Financiador: Ministerio de Ciencia, Innovación y Universidades
Código: PID2019-104256RB-I00 "Retos Investigación"
Componentes: Cristina Rojas Ruiz, Belinda Sigüenza Carballo
Grupo de Investigación: Tribología y Protección de Superficies

El cambio climático ocasionado por las emisiones de gases con efecto invernadero y el agotamiento de los combustibles fósiles a corto-medio plazo hacen necesaria la búsqueda de nuevas fuentes de energía alternativas, limpias y renovables. De entre ellas, la energía solar es una de las mejores opciones por su gran disponibilidad para la generación de calor y electricidad.

El objetivo de este proyecto va encaminado al desarrollo de nuevos recubrimientos absorbedores solares selectivos crecidos en forma de multicapas basados en nitruros metálicos de cromo y aluminio (CrAlN). Las propiedades de resistencia a la oxidación y estabilidad térmica del CrAlN unidas a un diseño nanoestructurado adecuado permitirán mantener unas buenas prestaciones ópticas (alta absorbancia y baja emitancia) y mejorar su durabilidad a alta temperatura. El incremento de la temperatura de trabajo (T>550ºC) conllevará una mejora de la eficiencia y una reducción de costes de las plantas de concentración de solar térmica, haciéndolas más competitivas. Para su preparación se utilizará la técnica de pulverización catódica mediante impulsos de alta intensidad (HiPIMS), una variante reciente de la pulverización catódica convencional que permite mejorar la densidad y compacidad de las capas gracias a un mayor grado de ionización del plasma. Estas propiedades son de interés para mejorar la adhesión al sustrato y ralentizar los procesos de degradación térmica. Además de los nitruros se ensayarían otras configuraciones cambiando el tipo de material absorbedor (oxinitruros y nanocomposites de carburos metálicos).

El proyecto comprenderá todas las etapas, desde la síntesis de los materiales componentes de las estructuras solares selectivas, diseño y simulación de su comportamiento óptico, a su validación en condiciones similares a la aplicación final (a nivel de laboratorio y ensayos de campo). La caracterización estructural, química y de estabilidad térmica y resistencia a la oxidación discurrirá en paralelo con el fin de optimizar los recubrimientos solares selectivos con mejores prestaciones y durabilidad.


Tecnología de plasma para la fabricación de celdas solares de perovskita eficientes y duraderas a prueba de agua




01-06-2020 / 31-05-2023



Investigador Principal: Juan Ramón Sánchez Valencia / Maria del Carmen López Santos
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PID2019-109603RA-I00 "Retos"
Componentes: Juan Pedro Espinós Manzorro, Xabier García Casas, Víctor López Flores, Javier Castillo Seoane
Grupo de Investigación: Nanotecnología en Superficies y Plasma

Las celdas solares –dispositivos que transforman directamente la luz solar en electricidad- son de vital interés para el futuro sostenible del planeta. Durante los últimos años y conscientes de este hecho, la comunidad científica ha realizado un gran esfuerzo por mejorar la eficiencia de estos dispositivos. Un ejemplo particular de celda solar que contiene una perovskita de haluro organometálico como absorbedor de luz han centrado la atención de la comunidad científica durante la última década debido, sobre todo, a su alta eficiencia y bajo coste. Esta tecnología de celda solar supone una alternativa prometedora a las celdas actuales (basadas en Si y en calcogenuros), aunque se enfrentan a un reto científico y tecnológico que no ha sido resuelto en 10 años desde su descubrimiento: para que la realización final y comercial de las celdas de perovskita sea posible, necesitan alcanzar una mayor estabilidad, durabilidad y reproducibilidad. El principal problema radica en la alta sensibilidad que presentan estas perovskitas al oxígeno y humedad ambiental, que producen una rápida degradación del comportamiento de la celda en un tiempo extremadamente corto, haciendo inviable su comercialización.

DuraSol persigue abordar este gran reto científico y tecnológico mediante la fabricación de componentes de la celda mediante tecnología de vacío y plasma. Estas metodologías son escalables industrialmente y presentan grandes ventajas con respecto a las metodologías en disolución (las más usadas), entre las que destacan: su alta versatilidad, control de composición y microestructura, bajo coste, que son respetuosas con el medio ambiente ya que no precisan disolventes, no producen emisiones contaminantes y son compatibles con la tecnología actual de semiconductores.

El objetivo principal de DuraSol es la fabricación de celdas solares de perovskita “a prueba de agua” mediante integración de componentes fabricados por metodologías de vacío y plasma en forma de películas delgadas y nanoestructuras, que actúan como sellantes hidrofóbicos. La viabilidad de DuraSol se basa en resultados recientes que demuestran que la fabricación asistida por plasma de distintos componentes de la celda solar puede ser una de las vías más prometedoras para aumentar su estabilidad y durabilidad, que es hoy en día el cuello de botella que impide su comercialización. Cabe señalar que no hay ningún ejemplo en la literatura de este enfoque sintético, y se espera que esta oportunidad demuestre las ventajas y la versatilidad de esta metodología innovadora en un campo de muy alto impacto. La investigación propuesta en DuraSol se enmarca dentro de las áreas prioritarias del programa Horizon 2021-2027 de la Unión Europea y responden a varios de los retos propuestos en la presente convocatoria de “Energía segura, eficiente y limpia” (Reto 3) y de “Cambio climático y utilización de recursos y materias primas” (Reto 5).


Diseño y selección de materiales novedosos para fabricar pilas de combustible de óxido sólido de alto rendimiento




01-02-2020 / 31-01-2022



Investigador Principal: Francisco José García García (US)
Organismo Financiador: Junta de Andalucía
Código: US-15382 "Emergente"
Componentes: Francisco J. Gotor Martínez
Grupo de Investigación: Reactividad de Sólidos

Las pilas de combustible de óxido sólido (SOFCs) son una de las tecnologías más prometedoras y respetuosas con el medio ambiente para la generación de energía eléctrica de forma eficiente a partir de gas natural y otros combustibles fósiles (hidrocarburos). Las SOFCs evitan la combustión directa del combustible, lo que resulta en unas eficiencias de conversión mucho mayores que las que se obtienen mediante métodos termo-mecánicos. Sin embargo, diversas dificultades técnicas relacionadas con el envenenamiento de los ánodos frente a hidrocarburos, problemas de estabilidad química e integridad mecánica de los electrolitos y la alta temperatura de funcionamiento, que reduce la selección de materiales y encarece la tecnología, han impedido la explotación a larga escala de las SOFCs. Un componente de vital importancia es el ánodo, en donde tienen lugar las reacciones electro-catalíticas que convierten la energía química del combustible en corriente eléctrica. Los principales problemas a los que se enfrenta el ánodo están relacionados con (i) su durabilidad, (ii) la difusión del gas y el transporte eléctrico y (iii) la resistencia al envenenamiento químico por carbono y azufre presentes en hidrocarburos. Otro componente crítico es el electrolito, que permite la difusión de iones óxido desde el cátodo hasta el ánodo. Las principales características que debe presentar el electrolito están relacionadas con (i) una elevada conductividad iónica, pero despreciable conductividad electrónica, (ii) unas buenas propiedades mecánicas y (iii) una estabilidad en atmósfera reductora y oxidante. Por ello, si queremos que se generalice la aplicación y el uso de esta tecnología limpia, es necesario que los materiales que se usan como ánodos y electrolitos en SOFCs presenten unas propiedades fisicoquímicas y mecánicas que permitan superar las limitaciones actuales. El proyecto propuesto tiene como objetivo abordar algunos de los problemas expuestos con anterioridad mediante el desarrollo de nuevos ánodos resistentes al envenenamiento en presencia de hidrocarburos y el uso de electrolitos con mejoradas propiedades mecánicas gracias a nuevas arquitecturas. Para ello, vamos a sintetizar por métodos mecano-químicos de una forma barata, versátil y simple nuevos ánodos basados en perovskitas dobles de composición PrBaMn2-jXjO5+δ (PBMXO), con X = Mn, Co, Ni, o Fe y 0 < j < 0.5, a la vez que se diseñarán y fabricarán electrolitos laminados que permitan aumentar su fiabilidad mecánica, sin menoscabo de las propiedades conductoras.


Tecnología de plasma para el desarrollo de una nueva generación de conductores de huecos en celdas solares de perovskita. PlasmaCells




01-01-2020 / 31-12-2022



Investigador Principal: Juan Ramón Sánchez Valencia (US)
Organismo Financiador: Junta de Andalucía
Código: US-1263142 "Emergente"
Componentes: Angel Barranco Quero, Juan Pedro Espinós Manzorro, Cristina Rojas Ruiz, José Cotrino Bautista
Grupo de Investigación: Nanotecnología en Superficies y Plasma, Grupo de Investigación: Tribología y Protección de Superficies

Las celdas solares (CSs) de tercera generación son dispositivos nanotecnológicos que convierten directamente la luz solar en electricidad y suponen el paradigma de la investigación en energías renovables de cuyo aprovechamiento dependerá el futuro energético del planeta. Recientemente, un ejemplo particular de CSs que contienen una perovskita de haluro organometálico como absorbedor de luz han centrado la atención de la comunidad científica debido, ante todo, a su alta eficiencia y bajo coste. Estas características las convierten en una alternativa prometedora a las celdas actuales (de Si y calcogenuros). Sin embargo, para que la realización final y comercial de las celdas de perovskita sea posible es necesario que alcancen una mayor estabilidad, durabilidad y reproducibilidad. Los avances más importantes alcanzados se han debido a la intensa investigación sobre los elementos que integran esta CS: conductor de electrones, perovskita y conductor de huecos. En concreto, este último elemento ha tenido una importancia crucial en su evolución tras la implementación de los conductores de huecos en estado sólido.

PlasmaCells persigue abordar por primera vez la síntesis de una nueva familia de conductores de huecos por técnicas de vacío y plasma. Estas metodologías son escalables industrialmente y presentan grandes ventajas con respecto a las metodologías en disolución (las más usadas), entre las que destacan: su alta versatilidad, control de composición y microestructura, bajo coste, que son respetuosas con el medio ambiente ya que no precisan disolventes, no producen emisiones contaminantes y son compatibles con la tecnología actual de semiconductores.

El objetivo principal de PlasmaCells es la integración de estos nuevos conductores de huecos procesados por plasma en CSs de perovskita. La importancia del proyecto se basa en resultados recientes obtenidos por el Investigador Principal (IP) que demuestran que la aproximación propuesta puede ser una de las vías más prometedoras para el aumento de la estabilidad, durabilidad y reproducibilidad de estas CSs, que actualmente suponen el cuello de botella que impide su industrialización. Cabe destacar que no existe en la bibliografía ningún ejemplo sobre esta aproximación sintética para el desarrollo de conductores de huecos. Se espera que esta oportunidad permita demostrar las ventajas y versatilidad de esta metodología innovadora en un campo de alto impacto, que se enmarca dentro de las áreas prioritarias RIS3 Andalucía y en el PAIDI 2020 de crecimiento sostenible, eficiencia energética y energías renovables.


Descongelación inteligente y sostenible mediante ingeniería de ondas acústicas aplicadas a superficies | SOUNDOFICE




01-11-2020 / 31-10-2024



Investigador Principal: Coordinador ICMS: Ana Isabel Borrás Martos
Organismo Financiador: European Commission Horizon 2020
Código: H2020-FET-OPEN/0717
Componentes: Agustín R. González-Elipe, Juan Pedro Espinós, Francisco Yubero, Ángel Barranco, Víctor Rico, María del Carmen López Santos
Grupo de Investigación: Nanotecnología en Superficies y Plasma

Icing on surfaces is commonplace in nature and industry and too often causes catastrophic events. SOUNDofICE ultimate goal is to overcome costly and environmentally harmful de-icing methods with a pioneering strategy based on the surface engineering of MHz Acoustic Waves for a smart and sustainable removal of ice. This technology encompasses the autonomous detection and low-energy-consuming removal of accreted ice on any material and geometry. For the first time, both detection and de-icing will share the same operating principle. The visionary research program covers the modeling of surface wave atom excitation of ice aggregates, integration of acoustic transducers on large areas, and the development of surface engineering solutions to stack micron-size interdigitated electrodes together with different layers providing efficient wave propagation, anti-icing capacity, and aging resistance. We will demonstrate that this de-icing strategy surpasses existing methods in performance, multifunctionality, and capacity of integration on industrially relevant substrates as validated with proof of concept devices suited for the aeronautic and wind power industries. SOUNDofICE high-risks will be confronted by a strongly interdisciplinary team from five academic centers covering both the fundamental and applied aspects. Two SMEs with first-hand experience in icing will be in charge of testing this technology and its future transfer to key EU players in aeronautics, renewable energy, and household appliances. An Advisory Board incorporating relevant companies will contribute to effective dissemination and benchmarking. The flexibility of the R&D plan, multidisciplinarity, and assistance of the AdB guarantee the success of this proposal, bringing up a unique opportunity for young academia leaders and SMEs from five different countries to strengthen the EU position on a high fundamental and technological impact field, just on the moment when the climate issues are of maxima importance.

*Participantes
- INMA: Instituto de Nanociencia y Materiales de Aragón, Spain
-UNIZAR: Universidad de Zaragoza, Spain
-TECPAR: Fundacja Partnerstwa Technologicznego Technology Partners;  Poland
- IFW: Leibniz-Institut Fuer Festkoerper- Und Werkstoffforschung Dresden E.V.;  Germany
-TAU: Tampereen Korkeakoulusaatio SR;  Finland
- INTA: Instituto Nacional De Tecnica Aeroespacial Esteban Terradas; Spain
- Villinger: VILLINGER GMBH,  Austria
- EnerOcean: EnerOcean S.L.,  Spain


Cerámicas Conductoras de Protones para Electrolizadores Reversibles de Alta Eficiencia y Aplicaciones Power to X




01-06-2020 / 31-05-2023



Investigador Principal: Joaquín Ramírez Rico / Ricardo Chacartegui Ramírez
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PID2019-107019RB-I00 "Retos de la Sociedad"
Componentes: Alfonso Bravo León, Manuel Jiménez Melendo, Julián Martínez Fernández, Miguel Torres García
Grupo de Investigación: Materiales de Diseño para la Energía y Medioambiente

PROCEX aborda el Reto social 3 "Energía limpia, eficiente y segura" y pretende abrir camino a una nueva generación de electrolizadores reversibles de alta eficiencia que operan a temperaturas intermedias (sobre 500ºC). Su éxito abriría una vía muy prometedora para nuevos sistemas de almacenamiento de energía fotovoltaica y eólica con características sobresalientes, tales como eficiencias de ida y vuelta (superiores al 75%) o tasas de retorno energético (>10). Estos valores son muy superiores a los que se pueden alcanzar con los mejores sistemas de almacenamiento térmico. Además, el uso de electrolizadores de alta eficiencia encontraría un enorme campo de aplicación en la producción de H2 y en la industria química. Para desarrollar estos sistemas, es necesario superar numerosos retos en el ámbito de los materiales cerámicos: en particular, es necesario desarrollar nuevos electrolitos conductores de protones con baja conductividad electrónica.

El objetivo principal del proyecto es identificar, sintetizar y demostrar nuevos materiales cerámicos conductores de protones con bajas pérdidas electrónicas en electrolisis, usando estrategias de dopado en compuestos de circonatos y ceratos de bario. Ponemos énfasis no sólo en mejorar la eficiencia sino también en la durabilidad de estos materiales. El proyecto demostrará el procesado de los electrolitos y su integración en pilas tipo botón a escala laboratorio, y estudiará los principales mecanismos de reacción, desarrollando modelos que permitan predecir su comportamiento a gran escala. Este proyecto parte de resultados publicados muy recientemente en la literatura y pretende superarlos apoyándose en las capacidades y experiencia previa del equipo investigador. En el proyecto ampliaremos el rango de composiciones y dopantes a estudiar y realizaremos un estudio sistemático que nos permita relacionar la composición y procesado con las propiedades y el rendimiento en condiciones de servicio (i.e. la degradación y el envejecimiento. A partir de la información obtenida pretendemos desarrollar y validar nuevos modelos que permitan evaluar la integración de estos sistemas en distintas aplicaciones. La ambición del este proyecto requiere un tratamiento multidisciplinar fruto de la combinación de dos grupos de investigación, uno de Ciencia de Materiales y otro de Ingeniería Energética, que poseen las capacidades e instalaciones necesarias para llevar a buen término el proyecto: síntesis y procesado de materiales, caracterización física, modelado numérico e integración de sistemas de almacenamiento de energía.


Diseño de nanomateriales tridimensionales para la solución todo en uno a la recolección de energía ambiental de fuentes múltiples | 3DSCAVENGERS




01-03-2020 / 28-02-2025



Investigador Principal: Ana Isabel Borrás Martos
Organismo Financiador: Unión Europea
Código: H2020-ERC-STG/0655 STARTING GRANT
Grupo de Investigación: Nanotecnología en Superficies y Plasma

https://3dscavengers.icms.us-csic.es/

Thermal and solar energy as well as body movement are all sources of energy. They can be exploited by advanced technology, obviating the need for battery recharging. These local ambient sources of energy can be captured and stored. However, their low intensity and intermittent nature reduces the recovery of energy by microscale instruments, highlighting the need for an integrated multisource energy harvester. Existing methods combine different single source scavengers in one instrument or use multifunctional materials to concurrently convert various energy sources into electricity.

The EU-funded 3DScavengers project proposes a compact solution based on the nanoscale architecture of multifunctional three-dimensional materials to fill the gap between the two existing methods. These nanoarchitectures will be able to simultaneous and individual harvesting from light, movement and temperature fluctuations. 3DScavengers ultimate goal is to apply a scalable and environmental friendly one-reactor plasma and vacuum approach for the synthesis of this advanced generation of nanomaterials.

 

 

@dscavengers


Modelado e implementación de la técnica Freeze-Casting: gradientes de porosidad con un equilibrio tribo-mecánico y comportamiento celular electro-estimulado




01-02-2020 / 31-01-2022



Investigador Principal: Yadir Torres Hernández (US) / Juan Carlos Sánchez López
Organismo Financiador: Junta de Andalucía. Universidad de Sevilla
Código: US-1259771
Componentes: Ana María Beltrán Custodio, Alberto Olmo Fernández, Paloma Trueba Muñoz, María de los Ángeles Vázquez Gámez
Grupo de Investigación: Tribología y Protección de Superficies

El titanio comercialmente puro (Ti c.p.) y la aleación Ti6Al4V, son los biomateriales metálicos con el mejor pronóstico para la reparación clínica del tejido óseo. Sin embargo, a pesar de sus ventajas, 5-10% de los implantes fallan durante los cinco años post-implantación. Éstos se asocian fundamentalmente al apantallamiento de tensiones (diferencias de rigidez entre el implante-hueso), el empleo de criterios de diseño (fractura y fatiga) no adecuados para biomateriales, a los fenómenos de tribo-corrosión en condiciones de servicio y a los problemas que ocurren en la intercara (micromovimientos y/o presencia de bacterias) que limitan la capacidad de oseintegración. En este proyecto se propone fabricar e implementar un dispositivo sencillo y económico para obtener cilindros con porosidad controlada (gradiente) y alargada mediante la técnica de congelación dirigida. Se desarrollaran modelos de elementos finitos para estimar el crecimiento geométrico de las dendritas de hielo y el comportamiento mecánico de los cilindros porosos (distribución de esfuerzos y deformaciones), usando radiografías en tiempo real del proceso de congelación dirigida, así como los parámetros que caracterizan la microestructura (proporción, tamaño, morfología de la porosidad) y el comportamiento a compresión (rigidez y límite de fluencia). Además, se plantea la generación de patrones de rugosidad superficial mediante el bombardeo de iones, encaminados a mejorar la unión intima entre el implante y el tejido óseo. Por otra parte, se plantean protocolos in-vitro adecuados para evaluar la citotoxicidad, la adhesión, diferenciación y proliferación celular. Finalmente, se desarrollará un sistema de medida de bio-impedancia que permita racionalizar la influencia de la porosidad, el acabado superficial y los estímulos eléctricos en el comportamiento in-situ de osteoblastos. En este contexto, el objetivo principal es fabricar cilindros con una porosidad controlada y su superficie modificada, que permita garantizar un mejor equilibrio biomecánico, tribo-corrosivo y biofuncional (in-growth y oseointegración del tejido óseo y el implante).


icms