Menú secundario

Artículos SCI



2025


Materiales Nanoestructurados y Microestructura

On the characteristics of helium filled nano-pores in amorphous silicon thin films

Lacroix, B; Fernández, A; Pyper, NC; Thom, AJW; Whelan, CT
Applied Surface Science, 683 (2025) 161772
DOI: 10.1016/j.apsusc.2024.161772

Abstract

A joint theory-experimental study is presented of irregularly shaped nano-pores in amorphous silicon. STEM- ELLS spectra were measured for each pore. The observed helium 1 s 2- 1 s 2 p( 1 P ) excitation energies were found to be shifted from that of a free atom. The relation between the helium density in the pore and these energy shifts is explored and shown to be completely consistent with earlier studies of helium in its bulk condensed phases as well as encapsulated as bubbles in solid silicon. The density, pressure and depth of the pores, all key properties for applications, were determined. An alternative and novel method for determining the depth of the pores more accurately is presented.


Febrero, 2025 | DOI: 10.1016/j.apsusc.2024.161772

Reactividad de Sólidos

Plasma-flash sintering: Metastable phase stabilization and evidence of ionized species

Gil-González, E; Taibi, A; Perejón, A; Sánchez-Jiménez, PE; Pérez-Maqueda, LA
Journal of the American Ceramic Society, 108 (2025) e20105
DOI: 10.1111/jace.20105

Abstract

The first demonstration of plasma-flash sintering (PFS) is presented in this work. PFS is performed under a low-pressure atmosphere that consecutively generates plasma and flash events. It is shown, by using several combined characterization techniques, that PFS stabilizes metastable phases on the surface of the material, which may be partially, but not solely, attributed to the generation of oxygen vacancies, and induces the absorption of ionized species, if a reactive atmosphere is employed. Even though additional research is required to understand the fundamentals of PFS, it is evidenced its potential to be used as a material surface engineering tool, which may widen the technological capabilities of flash sintering.

Cover PhotographPlasma-Flash Sintering (PFS) is performed under low-pressure atmosphere that consecutively generates plasma and flash events. This study shows that PFS stabilizes metastable phases on the surface of the material and enables absorption of ionized species generated in the plasma, giving this technique potential to be used as a surface engineering tool. Read more in the rapid communication in this issue,


Enero, 2025 | DOI: 10.1111/jace.20105



2024


Reactividad de Sólidos

Alloy exsolution in co-doped PrBaMn2-xTMxO5+δ (TM = Co and/or Ni) obtained by mechanochemistry

Gotor, FJ; Sayagués, MJ; Zamudio-García, J; Marrero-Löpez, D; García-García, FJ
Journal of Power Sources, 623 (2024) 235395
DOI: 10.1016/j.jpowsour.2024.235395

Abstract

Doped-PrBaMn2-xTMxO5+delta samples with TM = Co and/or Ni were synthesized by a mechanochemical route from stoichiometric oxide precursor mixtures (Pr6O11, BaO2, MnO, NiO and CoO) using a planetary mill at 600 rpm for 150 min. A disordered ABO(3) pseudocubic perovskite phase was obtained after the milling process that was transformed, as established by XRD, into the double layered AA'B2O5+delta perovskite phase after annealing at 900 degrees C in a reducing atmosphere (10%H-2/Ar). The microstructural characterization by SEM, TEM, and HRTEM ascertained that this reducing treatment induced the exsolution of Ni and Co metallic nanoparticles from the doped samples. Ni-Co alloys were even exsolved when the layered manganite phase was co-doped with both transition metals. It was confirmed that the exsolution process was reversible by switching the working atmosphere from reducing to oxidizing. Polarization resistance values of the doped samples determined in symmetrical cells in air and H-2, as well as the electrochemical performance of electrolyte LSGM-supported planar cells suggested that these samples can be used as symmetrical electrodes in SOFCs.


Diciembre, 2024 | DOI: 10.1016/j.jpowsour.2024.235395

Materiales Semiconductores para la Sostenibilidad

Better together: Monolithic halide perovskite@metal-organic framework composites

Avila, E; Salway, H; Ruggen, E; Çamur, C; Rampal, N; Doherty, TAS; Moseley, ODI; Sstranks, SD; Faren-Jimenez, D; Anaya, M
Matter (2024).
DOI: 10.1016/j.matt.2024.08.022

Abstract

The instability and limited scalability of halide perovskites hinder their long-term viability in applications as X-ray detectors. Here, we introduce a sol-gel ship-in-bottle approach to produce a monolithic perovskite@metal-organic framework (MOF) composite, combining the properties of the individual building blocks and enhancing density, robustness, and stability. By tuning seed particles below 100 nm, we achieve highly crystalline, dense composites with up to 40% perovskite loading. Structural and optical characterization unveils perovskite nanocrystals forming within MOF mesopores, maximizing stability and preventing degradation, maintaining over 90% photoluminescence and structural integrity after weeks of exposure to humidity, heat, and solvents. Proposed as an innovative class of scintillator, these monolithic perovskite@MOFs attenuate X-rays efficiently and exhibit outstanding stability under high radiation doses equivalent to 110,000 typical chest X-rays, with a radioluminescence lifetime of 10 ns, outperforming commercial scintillators. This approach offers vast potential for developing high-performance, cost-effective, and stable devices for radiation detection and other optoelectronic applications.


Diciembre, 2024 | DOI: 10.1016/j.matt.2024.08.022

Materiales de Diseño para la Energía y Medioambiente

Influence of the chemical activation with KOH/KNO3 on the CO2 adsorption capacity of activated carbons from pyrolysis of cellulose

Lamata-Bermejo, I; Alba, MD; Ramírez-Rico, J
Journal of Envieronmental Chemical Engineering, 12 (2024) 114288
DOI: 10.1016/j.jece.2024.114288

Abstract

Plant biomass is an attractive precursor to prepare activated carbons with high surface area for CO2 adsorption due to its low-cost and easy regeneration. Despite this interest, there are still remaining questions regarding the optimal processing conditions and the choice of activating agent. Moreover, since plant biomass shows a highly variable proportion of different biopolymers (cellulose, hemicellulose, lignin), it is important to understand the activation effect on each constituent. In this work, carbons obtained from pyrolysis of cellulose were activated using two potassium salts, using two different activation temperatures. The samples were characterized to elucidate the influence of the activation conditions on their CO2 adsorption capacity. In general, all the carbons activated at higher temperature showed higher adsorption capacity. These results are comparable with other carbons derived from biomass described in the bibliography. Among the activated carbons studied, the carbon activated only with KOH exhibits the highest CO2 adsorption capacity at 1 bar meanwhile the highest adsorption capacity at saturation pressure belongs to the carbon activated with larger ratio of KNO3.


Diciembre, 2024 | DOI: 10.1016/j.jece.2024.114288

Química de Superficies y Catálisis

CO2 hydrogenation to light olefins over highly active and selective Ga-Zr/SAPO-34 bifunctional catalyst

Wang, Q; Xing, MQ; Wang, LP; Gong, ZY; Nawaz, MA; Blay-Roger, R; Ramirez-Reina, T; Li, Z; Meng, FH
Molecular Catalysis, 569 (2024) 114567
DOI: 10.1016/j.mcat.2024.114567

Abstract

The direct conversion of carbon dioxide into hydrocarbons is a very desirable but difficult approach for achieving lower value-added olefins with minimal CO selectivity. In this effort, we report the direct conversion of CO2 into light olefins on a Cu/CeO2 hybrid catalyst mixed with SAPO-34 zeolite. The samples are characterized by N-2 sorption, XRD, TEM, SEM, NH3-TPD and H-2 -TPR. The results showed that the acidity of modified zeolite had decreased. The response surface methodology has been used to optimize the operating parameters (temperature and space velocity (SV)) of process. A high olefin selectivity of 70.4% has been obtained on CuCe/SAPO-34 at H-2/CO2 =3, 10 h, 382.46 degrees C, 17.33 L/g.h and 20 bar. The optimum operating conditions for multiple responses have also been achieved. The optimal values are T = 396.26 degrees C and SV = 5.80 L/g.h. Under these conditions, the predicted olefin and CO selectivity and CO2 conversion are 61.83%, 57.11% and 13.15%, respectively. Multiple optimization outputs are outstanding for obtaining the suitable operating conditions.


Diciembre, 2024 | DOI: 10.1016/j.mcat.2024.114567

Materiales de Diseño para la Energía y Medioambiente

Poly(Ionic) Liquid-Enhanced Ion Dynamics in Cellulose-Derived Gel Polymer Electrolytes

Paiva, TG; Klem, M; Silvestre, SL; Coelho, J; Alves, N; Fortunato, E; Cabrita, EJ; Corvo, MC
ChemSusChem (2024).
DOI: 10.1002/cssc.202401710

Abstract

Gel polymer electrolytes (GPEs) are regarded as a promising alternative to conventional electrolytes, combining the advantages of solid and liquid electrolytes. Leveraging the abundance and eco-friendliness of cellulose-based materials, GPEs were produced using methyl cellulose and incorporating various doping agents, either an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr14][TFSI]), its polymeric ionic liquid analogue (Poly(diallyldimethylammonium bis(trifluoromethylsulfonyl)imide) [PDADMA][TFSI]), or an anionically charged backbone polymeric ionic liquid (lithium poly[(4-styrenesulfonyl)(trifluoromethyl(S-trifluoromethylsulfonylimino) sulfonyl) imide] LiP[STFSI]). The ion dynamics and molecular interactions within the GPEs were thoroughly analyzed using Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Heteronuclear Overhauser Enhancement Spectroscopy (HOESY), and Pulsed-Field Gradient Nuclear Magnetic Resonance Diffusion (PFG-NMR). Li+ transference numbers (tLi+) were successfully calculated. Our study found that by combining slow-diffusing polymeric ionic liquids (PILs) with fast-diffusing lithium salt, we were able to achieve transference numbers comparable to those of liquid electrolytes, especially with the anionic PIL, LiP[STFSI]. This research highlights the influence of the polymer ' s nature on lithium-ion transport within GPEs. Additionally, micro supercapacitor (MSC) devices assembled with these GPEs exhibited capacitive behavior. These findings suggest that further optimization of GPE composition could significantly improve their performance, thereby positioning them for application in sustainable and efficient energy storage systems.


Noviembre, 2024 | DOI: 10.1002/cssc.202401710

Química de Superficies y Catálisis

Influence of vanadium species on the catalytic oxidation of glucose for formic acid production

Álvarez-Hernández, D; Ivanova, S; Penkova, A; Centeno, MA
Catalysis Today, 441 (2024) 114906
DOI: DOI10.1016/j.cattod.2024.114906

Abstract

VOx/TiO2 catalysts with various theorical monolayer values have been prepared and used to study, for the first time, the effect of vanadium loading in the selective oxidation of glucose to formic acid. Monomeric or isolated vanadia species dominate at low loadings, evolving into polymeric chains at higher concentrations, while crystalline V2O5 is observed at loadings over the theoretical monolayer value. Their characterization by XRD, BET, ICP, DRIFTS, Raman, UV–vis, H2-TPR and NH3-TPD reveal distinct physicochemical characteristics influenced by the formed vanadia species, impacting sample acidity, reducibility, and catalytic activity. All catalysts exhibit significant activity, forming formic acid as the main product in the liquid phase and reaching a peak formic acid yield of 42 %. Post-reaction analysis reveals that the leaching-prone crystalline V2O5 compromises catalyst stability while isolated vanadia species demonstrate superior catalytic activity and leaching resistance. The findings of this study provide a strong basis for the development of a heterogeneous vanadia catalyst with improved interaction with the support.


Noviembre, 2024 | DOI: DOI10.1016/j.cattod.2024.114906

Materiales Coloidales

Zn2-xGeO4-GeO2:(x)Mn2+ films with long persistence, intense brightness and high quantum efficiency, deposited by ultrasonic spray pyrolysis

Calderón-Olvera, RM; Mendoza-Pérez, R; Arroyo, E; García-Hipólito, M; Falcony, C; Alvarez-Zauco, E
Optical Materials, 157 (2024) 116132
DOI: 10.1016/j.optmat.2024.116132

Abstract

This work shows the synthesis and characterization of the Zn2-xGeO4-GeO2:(x)Mn2+ (x = 0.10, 0.25, and 0.50 at.%) films using the Ultrasonic Spray Pyrolysis (USP) technique. These films were deposited at 500 degrees C and heat treated at 800 degrees C for 13 h. X-ray diffraction (XRD) measurements showed the rhombohedral and hexagonal phases of Zn2-xGeO4 (78.8 %) and GeO2 (21.2 %), respectively. SEM micrographs exhibited the surface morphology of these films. The STEM and HAADF show Ge, Zn, and O atomic layers. In addition, XPS was carried out to observe the oxidation states of Mn2+ (75.4 %) and Mn3+ (24.6 %) for the films doped with Mn ions (0.10 at.%). Incorporating manganese ions into the Zn2-xGeO4-GeO2 host lattice generated an extremely green emission, exciting at 250 nm. The photoluminescence and persistence luminescence properties were studied in accordance with the manganese doping concentration. For photoluminescence, it was found that the optimal doping percentage was 0.25 at.%, and for persistence luminescence, it was 0.10 at.% Mn with lambda(ex) = 250 nm. Quantum efficiency measurements gave a result of 100 %. In addition, preliminary CL measurements were exhibited.


Noviembre, 2024 | DOI: 10.1016/j.optmat.2024.116132

Reactividad de Sólidos

Stability and performance of BTC-based MOFs for environmental applications

Rodríguez-Esteban, C; Ayala, R; López-Cartes, C
Journal of Solid State Chemistry, 339 (2024) 124956
DOI: 10.1016/j.jssc.2024.124956

Abstract

Two series of open metal site MOFs, HKUST-1 and MIL-100(Fe), have been successfully prepared using different methods of synthesis. Their features depend on the synthetic route as well as their role play in different environmental applications. The stability and performance of these BTC-based MOFs have been tested bearing in mind Congo Red (CR) removal, humidity adsorption and iodine capture and release. HKUST-1 and MIL-100(Fe) samples could offer a remarkable role in the adsorption of CR from aqueous solutions. However, the lability of HKUST-1 in water is revealed as a drawback for its reutilization in both static and agitation conditions. The former contrasts to the stability under ambient moisture. MIL-100(Fe) shows promising properties in both CR adsorption in aqueous solutions and humidity adsorption. Nonetheless, the performance largely depends on the synthesis conditions. Although CR removal is based on surface interaction, there is a relation between the adsorpted quantity and the specific surface area. The size and nature of iodine allows the diffusion in the pores of both HKUST-1 and MIL-100(Fe) MOFs. This way, the uptake of iodine is driving by the porosity and surface area of samples rather than their inherent nature. As a rule, the results of this work indicate that not only is it important the specific nature of the MOF chosen for a given application but also the way in which it has been synthesized and the conditions in which they are used. MIL-100(Fe)-R is revealed as the best suitable candidate to be used as a sorbent for CR in aqueous solutions, moisture and I2 gas.


Noviembre, 2024 | DOI: 10.1016/j.jssc.2024.124956

Química de Superficies y Catálisis

A Circular Economy Perspective: Recycling Wastes through the CO2 Capture Process in Gypsum Products. Fire Resistance, Mechanical Properties, and Life Cycle Analysis

Ruiz-Martinez, JD; Moreno, V; González-Arias, J; Capilla, BP; Baena-Moreno, FM; Leiva, C
Fire-Switzerland, 7 (2024) 365
DOI: 10.3390/fire7100365

Abstract

In recent years, the implementation of CO2 capture systems has increased. To reduce the costs and the footprint of the processes, different industrial wastes are successfully proposed for CO2 capture, such as gypsum from desulfurization units. This gypsum undergoes an aqueous carbonation process for CO2 capture, producing an added-value solid material that can be valorized. In this work, panels have been manufactured with a replacement of (5 and 20%) commercial gypsum and all the compositions kept the water/solid ratio constant (0.45). The density, surface hardness, resistance to compression, bending, and fire resistance of 2 cm thick panels have been determined. The addition of the waste after the CO2 capture diminishes the density and mechanical strength. However, it fulfills the requirements of the different European regulations and diminishes 56% of the thermal conductivity when 20%wt of waste is used. Although the CO2 waste is decomposed endothermically at 650 degrees C, the fire resistance decreases by 18% when 20%wt. is added, which allows us to establish that these wastes can be used in fire-resistant panels. An environmental life cycle assessment was conducted by analyzing a recycling case in Spain. The results indicate that the material with CO2 capture waste offers no environmental advantage over gypsum unless the production plant is located within 200 km of the waste source, with transportation being the key factor.


Octubre, 2024 | DOI: 10.3390/fire7100365

Fotocatálisis Heterogénea: Aplicaciones - Química de Superficies y Catálisis

Controlling copper location on exchanged MOR-type aluminosilicate zeolites for methanol carbonylation: In situ/operando IR spectroscopic studies

Luque-Alvarez, LA; Torres-Sempere, G; Romero-Sarria, F; Bobadilla, LF; Ramírez-Reina, T; Odriozola, JA
Microporous and Mesoporous Materials, 378 (2024)
DOI: 10.1016/j.micromeso.2024.113258

Abstract

Replacing homogeneous catalytic processes by heterogeneous routes based on the utilization of solid catalysts is of great interest from an environmental point of view. Owing to their genuine pore structure, zeolites such as mordenites (MOR) have emerged as game-changing materials to enable the heterogenization of catalytic processes including methanol carbonylation. Cu-exchange zeolites take the edge over pristine zeolites, leading to enhanced catalytic performance in terms of greater activity, selectivity, and stability. Herein, the overall catalytic activity and stability can be modulated upon controlling the environment and location of copper active sites in zeolites. In this study, Cu-exchanged mordenites were strategically synthesized to investigate the role of Cu location inside of MOR cavities under working conditions by means of in situ/operando infrared (IR) spectroscopic studies. The results obtained revealed that a major proportion of Cu in the MR-8 cavities notably enhances the activity and stability of the catalyst. This study provides crucial insights for fine-tuning zeolite catalysts to achieve the heterogenization of homogeneous carbonylation processes.


Octubre, 2024 | DOI: 10.1016/j.micromeso.2024.113258

Química de Superficies y Catálisis

Navigating the Legislative Interventions, Challenges, and Opportunities in Revolutionizing Textile Upcycling/Recycling Processes for a Circular Economy

Saif, M; Blay-Roger, R; Zeeshan, M; Bobadilla, LF; Ramíres Reina, T; Asif Nawaz, M; Odriozola, JA
ACS Sustainable Resource Management, 1 (2024) 2338-2349.
DOI: 10.1021/acssusresmgt.4c00242

Abstract

Embracing a circular economy in the textile industry represents a crucial step toward sustainability, where fashion and textile sectors contribute significantly to CO2 emissions. However, transitioning from a linear “take-make-waste” model to circularity, poses multifaceted challenges, that highlight the staggering volume of annual textile waste surpassing industry predictions, thus emphasizing the urgent need for comprehensive strategies. Despite advancements in recycling technologies, challenges persist in collecting and sorting textile waste, where fragmentation in waste management and recycling processes hinders effective management of post-consumer waste. Addressing these challenges demands elevated efforts in collection, sorting, and pre-processing, alongside regulatory interventions to drive enhanced waste collection and circular business models. Efforts are underway to promote sustainable textile recycling, with initiatives like the EU’s Sustainable and Circular Textiles Strategy aiming to reduce reliance on virgin resources. However, achieving a circular textile market in the near future requires collaborative action and innovative solutions. Though challenges in scaling and technological limitations still remain, recent breakthroughs in textile-recycling technologies offer promise, signaling a shift toward scalable and sustainable alternatives to virgin fibers, where bio-based chemical processes, and thermochemical recycling processes present transformative opportunities. Where, bold scaling targets, collaborative efforts, and short-term funding support narrated in this perspective article are imperative to accelerate the transition to a circular textile economy, thus delving into the pivotal role of textile recycling, tracing the evolution of recycling technologies, and addressing critical challenges hindering widespread adoption.


Octubre, 2024 | DOI: 10.1021/acssusresmgt.4c00242

Materiales de Diseño para la Energía y Medioambiente

Revisiting plant cuticle biophysics

Heredia, A; Benitez, JJ; Moreno, AG; Domínguez, E
New Phytologist, 244 (2024) 65-73
DOI: 10.1111/nph.20009

Abstract

The plant cuticle is located at the interface of the plant with the environment, thus acting as a protective barrier against biotic and abiotic external stress factors, and regulating water loss. Additionally, it modulates mechanical stresses derived from internal tissues and also from the environment. Recent advances in the understanding of the hydric, mechanical, thermal, and, to a lower extent, optical and electric properties of the cuticle, as well as their phenomenological connections and relationships are reviewed. An equilibrium based on the interaction among the different biophysical properties is essential to ensure plant growth and development. The notable variability reported in cuticle geometry, surface topography, and microchemistry affects the analysis of some biophysical properties of the cuticle. This review aimed to provide an updated view of the plant cuticle, understood as a modification of the cell wall, in order to establish the state-of-the-art biophysics of the plant cuticle, and to serve as an inspiration for future research in the field.


Octubre, 2024 | DOI: 10.1111/nph.20009

Química de Superficies y Catálisis

Effect of calcination temperature on the synthesis of Ni-based cerium zirconate for dry reforming of methane

Martín-Espejo, JL; Merkouri, LP; Odriozola, JA; Reina, TR; Pastor-Pérez, L
Ceramics International, 50 (2024) 38406-38414
DOI: 10.1016/j.ceramint.2024.07.205

Abstract

Dry reforming of methane (DRM) represents an alluring approach to the direct conversion of CO2 and CH4, gases with the highest global warming potential, into syngas, a value-added intermediate used in chemical industry. In this study, mixed oxide structures of cerium and zirconium doped with 10 wt% Ni were used due to the high thermal stability. This study showcased the importance of choosing suitable conditions and explored the impact of calcination temperature on Ce-Zr mixed oxides with Ni. XRD analysis confirmed the existence of different crystalline phases according to the calcination temperature. Redox characterisation showed a trade-off among calcination temperature, the dispersion of Ni clusters and its interaction with the support structure. Calcined catalysts at 900 and 1000 degrees C underwent harsh, long-term DRM conditions. Despite the low surface area of the designed catalysts, the stability experiments proved a relation between dispersion of Ni active phase and catalytic performance, showing an optimum calcination temperature of 1000 degrees C.


Octubre, 2024 | DOI: 10.1016/j.ceramint.2024.07.205

Química de Superficies y Catálisis

Electrochemical tailoring of graphite properties for tunable catalytic selectivity of glucose conversion to 5-hydroxymethylfurfural

Delgado, G; Bounoukta, CE; Ivanova, S; Centeno, MA; Villar-Rodil, S; Paredes, JI; Cazaña, F; Monzón, A; García-Dalí, S
Applied Surface Science, 671 (2024) 160677
DOI: 10.1016/j.apsusc.2024.160677

Abstract

This study presents a novel approach for boosting the selectivity of 5-hydroxymethylfurfural (HMF) production from glucose through electrochemical modification of graphite materials. Three distinct graphitic substrates were subjected to controlled electrochemical treatments utilizing sodium sulfate or phosphoric acid as electrolytes. The process expanded the graphite particles/pieces and introduced oxygenated functional groups to the exposed surfaces while preserving the structural integrity of the bulk material. The resulting modifications influenced the type and quantity of Lewis and Brønsted acidic sites, providing exhaustive control over reaction pathways leading to HMF. This electrochemically modified graphite demonstrated superior tunability compared to traditional metal-based catalysts, enabling dynamic optimization of reaction conditions for enhanced HMF yield. The controlled introduction of functional groups facilitated the tailoring of active sites, significantly impacting the kinetics of glucose conversion and achieving HMF selectivity up to 95%. This level of precision in controlling catalytic properties is essential for maximizing HMF yield while minimizing undesired by-product formation, addressing a critical challenge in HMF production.


Octubre, 2024 | DOI: 10.1016/j.apsusc.2024.160677

Nanotecnología en Superficies y Plasma

Hard X-ray Photoelectron Spectroscopy Probing Fe Segregation during the Oxygen Evolution Reaction

Longo, F; Loreda-Jurado, PJ; Gil-Rostra, J; Gonzalez-Elipe, AR; Yubero, F; Thoma, SLJ; Neels, A; Borgschulte, A
ACS Applied Materials & Interfaces, 16 (2024) 59516-59527
DOI: 10.1021/acsami.4c11902

Abstract

NiFe electrocatalysts are among the most active phases for water splitting with regard to the alkaline oxygen evolution reaction (OER). The interplay between Ni and Fe, both at the surface and in the subsurface of the catalyst, is crucial to understanding such outstanding properties and remains a subject of debate. Various phenomena, ranging from the formation of oxides/(oxy)hydroxides to the associated segregation of certain species, occur during the electrochemical reactions and add another dimension of complexity that hinders the rational design of electrodes for water splitting. In this work, we have developed the procedure for the quantification of chemical depth profiling by XPS/HAXPES measurements and applied it to two NiFe electrodes with different porosities. The main outcome of this study is related to the surface reconstruction of the electrodes during the OER, followed at two different depths by means of X-ray photoelectron spectroscopy. We find that Fe initially segregates at the surface when exposed to ambient conditions, resulting in the formation of an inactive FeOx phase. In addition, the porosity of the catalyst plays a significant role in the segregation process and thus in the performance of the electrode. In particular, the higher porosity of the nanostructured sample is responsible for a more pronounced diffusion of Fe from the subsurface to the surface with a more effective suppression of the activity of the Ni1–xFexOOH phase. These results highlight the importance of the fact that the chemical state of the surface of a multielement system is a snapshot in time, dependent on both external parameters, such as the applied potential and the adjacent electrolyte, and the underlying bulk properties accessible with HAXPES.


Octubre, 2024 | DOI: 10.1021/acsami.4c11902

Materiales Ópticos Multifuncionales

Interplay between connectivity and passivating agents in perovskite quantum dot networks

Moran-Pedroso, M; Tiede, DO; Romero-Perez, C; Calvo, ME; Galisteo-Lopez, JF; Miguez, H
Journal of Materials Chemistry C (2024).
DOI: 10.1039/d4tc02362e

Abstract

Introducing quantum dots (QDs) as the active element of an optoelectronic device demands its incorporation in the shape of interconnected arrays that allow for some degree of electronic coupling in order to inject/extract charge carriers. In doing so, beyond reducing the degree of quantum confinement, carriers are exposed to an enhanced defect landscape as they can access adjacent QDs, which is at the origin of the strong reduction of photoluminescence observed in QD solids when compared to that of the isolated QDs. In this work we demonstrate how a proper defect passivating strategy or atmospheric treatment can greatly enhance charge diffusion in a QD film, needed for an optimal carrier injection/extraction demanded for optoelectronic applications, and also improved its stability against external radiation. From a fundamental perspective, we provide evidence showing that trap density distribution, rather than QD size distribution, is mostly responsible for the observed variations in emission decay rates present in the QD networks under analysis.
Different treatments (comprising polymeric encasement and different atmospheres) are applied to quantum dot solids in order to modify their defect landscape. The role of the latter in both, carrier recombination and stability, is unveiled.


Octubre, 2024 | DOI: 10.1039/d4tc02362e

Nanotecnología en Superficies y Plasma

Nucleation and growth of plasma sputtered silver nanoparticles under acoustic wave activation

Reichel, H; García-Valenzuela, A; Espino-Román, JA; Gil-Rostra, J; Regodón, GF; Rico-Gavira, V; Borrás, A; Gómez-Ramírez, A; Palmero, A; González-Elipe, AR; Oliva-Ramírez, M
Applied Surface Science, 669 (2024) 160566
DOI: 10.1016/j.apsusc.2024.160566

Abstract

Early results on the plasma deposition of dielectric thin films on acoustic wave (AW) activated substrates revealed a densification pattern arisen from the focusing of plasma ions and their impact on specific areas of the piezoelectric substrate. Herein, we extend this methodology to tailor the plasma deposition of metals onto AW-activated LiNbO3 piezoelectric substrates. Our investigation reveals the tracking of the initial stages of nanoparticle (NP) formation and growth during the submonolayer deposition of silver. We elucidate the specific role of AW activation in reducing particle size, enhancing particle circularity, and retarding NP agglomeration and account for the physical phenomena making these processes differ from those occurring on non-activated substrates. We provide a comparative analysis of the results obtained under two representative plasma conditions: diode DC sputtering and magnetron sputtering. In the latter case, the AW activation gives rise to a 2D pattern of domains with different amounts of silver and a distinct size and circularity for the silver NPs. This difference was attributed to the specific characteristics of the plasma sheath formed onto the substrate in each case. The possibilities of tuning the plasmon resonance absorption of silver NPs by AW activation of the sputtering deposition process are discussed.


Octubre, 2024 | DOI: 10.1016/j.apsusc.2024.160566

Tribología y Protección de Superficies

Microstructural and mechanical properties of TiN/CrN and TiSiN/CrN multilayer coatings deposited in an industrial-scale HiPIMS system: Effect of the Si incorporation

Sala, N; De Figueiredo, MR; Franz, R; Kainz, C; Sánchez-López, JC; Rojas, TC; De los Reyes, DF; Colominas, C; Abad, MD
Surface & Coatings, Technology, 494 (2024) 131461
DOI: 10.1016/j.surfcoat.2024.131461

Abstract

Surface engineering through the deposition of advanced coatings, particularly multilayer coatings has gained significant interest for enhancing the performance of coated parts. The incorporation of Si into TiN coatings has shown promise for improving hardness, oxidation resistance, and thermal stability, while high-power impulse magnetron sputtering (HiPIMS) has emerged as a technique to deposit coatings with exceptional properties. However, TiN/CrN and TiSiN/CrN coatings deposited by HiPIMS remain relatively unexplored. In this study, different TiN/CrN and TiSiN/CrN multilayer coatings with different bilayer periods from 5 to 85 nm were deposited using an industrial-scale HiPIMS reactor, and their microstructure and mechanical properties were investigated using advanced characterization techniques. Results revealed successful deposition of smooth and compact coatings with controlled bilayer periods. X-ray diffraction analysis showed separate crystalline phases for coatings with high bilayer periods, while those with smaller bilayer periods exhibited peak-overlapping and superlattice overtones, especially for the TiN/CrN coatings. Epitaxial grain growth was confirmed by highresolution transmission electron microscopy (HRTEM). HRTEM and electron energy-loss spectroscopy measurements confirmed Si incorporation into the TiN crystal lattice of TiSiN/CrN coatings reducing the crystallinity, especially for coatings with smaller bilayer periods. Nanoindentation tests revealed that coatings with a bilayer period of 15-20 nm displayed the highest hardness values regardless of the composition. The mechanical properties of the TiSiN/CrN coatings showed no improvement over those of the TiN/CrN coatings, attributed to the Si induced amorphization of the Ti(Si)N phase and the absence of SiNx phase segregation within the TiN nanocrystals in these coatings. These findings provide valuable insights into the microstructure and mechanical properties of TiN/CrN and TiSiN/CrN multilayer coatings deposited by HiPIMS in an industrial scale reactor, paving the way for their application in various industrial sectors.


Octubre, 2024 | DOI: 10.1016/j.surfcoat.2024.131461

Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Application of novel Zn-MIL53(Fe) for removal of micropollutants using an activated peroxymonosulphate system

Terrón, D; Holgado, JP; Giráldez, A; Rosales, E; Sanromán, MA; Pazos, M
Journal of Environmental Chemical Engineering, 12
DOI: 10.1016/j.jece.2024.113403

Abstract

Novel zinc-doped Metal-Organic Framework based on MIL53(Fe) (Zn-MIL53(Fe)) has been successfully synthesised in one-step, exhibiting dual applications as adsorbent and catalyst. Initially, the adsorption capacity of MIL53(Fe) and Zn-MIL53(Fe) for removing Rhodamine B was assessed through kinetic and isotherm studies. The bimetallic variant exhibited superior performance, showcasing enhanced adsorption capabilities, particularly in the context of its physical interaction under natural pH. After that, the catalytic activity of both synthesised materials was evaluated to generate sulphate radicals by activating PeroxyMonoSulphate (PMS). It was also demonstrated that Zn-MIL53(Fe) exhibited the best catalytic activity being optimised using response surface methodology for Rhodamine B degradation (0.11 mM PMS and 43.2 mg Zn-MIL53(Fe)). Under optimal conditions, favourable outcomes were attained, facilitating the degradation of Rhodamine B, Fluoxetine, and Sulfamethoxazole by 93, 99, and 75 %, respectively. Furthermore, the operational stability of the Zn-MIL53(Fe) was verified, as it remains structurally and catalytically intact after different cycles.


Octubre, 2024 | DOI: 10.1016/j.jece.2024.113403

Materiales Ópticos Multifuncionales

Strong Grain Boundary Passivation Effect of Coevaporated Dopants Enhances the Photoemission of Lead Halide Perovskites

Justin, IAK; Tiede, DO; Piot, M; Forzatti, M; Roldán-Carmona, C; Galisteo-López, FJ; Míguez, H; Bolink, HJ
ACS Applied Materials & Interfaces, 16 (2024) 61305-61313
DOI: 10.1021/acsami.4c13434

Abstract

Herein, we demonstrate that coevaporated dopants provide a means to passivate buried interfacial defects occurring at perovskite grain boundaries in evaporated perovskite thin films, thus giving rise to an enhanced photoluminescence. By means of an extensive photophysical characterization, we provide experimental evidence that indicate that the codopant acts mainly at the grain boundaries. They passivate interfacial traps and prevent the formation of photoinduced deep traps. On the other hand, the presence of an excessive amount of organic dopant can lead to a barrier for carrier diffusion. Hence, the passivation process demands a proper balance between the two effects. Our analysis on the role of the dopant, performed under different excitation regimes, permits evaluation of the performance of the material under conditions more adapted to photovoltaic or light emitting applications. In this context, the approach taken herein provides a screening method to evaluate the suitability of a passivating strategy prior to its incorporation into a device.


Octubre, 2024 | DOI: 10.1021/acsami.4c13434

Fotocatálisis Heterogénea: Aplicaciones

A critical view about use of scavengers for reactive species in heterogeneous photocatalysis

Puga, F; Navío, JA; Hidalgo, MC
Applied Catalysis A, General, 685 (2024) 119879
DOI: 10.1016/j.apcata.2024.119879

Abstract

In heterogeneous photocatalysis, different reactive species generated from the excitation of the semiconductor are responsible for the degradation of different contaminants in aqueous solution. In order to evaluate the influence of each of these reactive species on the photocatalysis process, it is common to perform an analysis using different chemical compounds, which (in theory) react selectively with only one reactive species, preventing this species from participating in the process. Questioning this analysis is the aim of this work and the reasons that lead us to this will be described and discussed. For this, different investigations were selected where this analysis was carried out on two model substrates, Rhodamine B and Phenol. With this, it was possible to determine which compounds are most used as scavengers for the different reactive species, and how these compounds influence the photodegradation process. It was possible to shown that none of the commonly used scavengers react selectively with only one reactive species, since it can also influence other reactions, either by reacting with other reactive species, with the surface of the catalyst, or with the substrate under study, among others. In our opinion, the conclusions obtained by using scavenger analysis should be carefully considered, and the compounds used should be renamed as interfering species of the photocatalytic process.


Septiembre, 2024 | DOI: 10.1016/j.apcata.2024.119879

Materiales Coloidales

Sodium lanthanide tungstate-based nanoparticles as bimodal contrast agents for in vivo high-field MRI and CT imaging

Gómez-González, E; Caro, C; Núñez, NO; González-Mancebo, D; Urbano-Gámez, JD; García-Martín, ML; Ocaña, M
Journal of Materials Chemistry B (2024).
DOI: 10.1039/d4tb01157k

Abstract

Research on high-field magnetic resonance imaging (HF-MRI) has been increased in recent years, aiming to improve diagnosis accuracy by increasing the signal-to-noise ratio and hence image quality. Conventional contrast agents (CAs) have important limitations for HF-MRI, with the consequent need for the development of new CAs. Among them, the most promising alternatives are those based on Dy3+ or Ho3+ compounds. Notably, the high atomic number of lanthanide cations would bestow a high capability for X-ray attenuation to such Dy or Ho-based compounds, which would also allow them to be employed as CAs for X-ray computed tomography (CT). In this work, we have prepared uniform NaDy(WO4)(2) and NaHo(WO4)(2) nanoparticles (NPs), which were dispersible under conditions that mimic the physiological media and were nontoxic for cells, meeting the main requirements for their use in vivo. Both NPs exhibited satisfactory magnetic relaxivities at 9.4 T, thus making them a promising alternative to clinical CAs for HF-MRI. Furthermore, after their intravenous administration in tumor-bearing mice, both NPs exhibited significant accumulation inside the tumor at 24 h, attributable to passive targeting by the enhanced permeability and retention (EPR) effect. Therefore, our NPs are suitable for the detection of tumors through HF-MRI. Finally, NaDy(WO4)(2) NPs showed a superior X-ray attenuation capability than iohexol (commercial CT CA), which, along with their high r(2) value, makes them suitable as the dual-probe for both HF-MRI and CT imaging, as demonstrated by in vivo experiments conducted using healthy mice.


Septiembre, 2024 | DOI: 10.1039/d4tb01157k

Química de Superficies y Catálisis

Oxygen vacancy-dependent low-temperature performance of Ni/CeO2 in CO2 methanation

Liao, LL; Wang, KL; Liao, GF; Nawaz, MA; Liu, K
Catalysis Science & Technology, (2024).
DOI: 10.1039/d4cy00679h

Abstract

The transformative power of CO2 methanation can efficiently transform greenhouse gases into high-value products, aligning with the carbon neutrality goals. However, achieving this target at low temperature requires cumbersome efforts in designing catalysts that possess high reactivity and selectivity. Focusing on understanding the pivotal role of alkaline (such as Ca) sites in catalyzing these reactions at lower temperature could be a way of strategically creating oxygen vacancies with varying activity gradients. Designing CaCe-SG via a sol-gel method in the current study to integrate Ca into the CeO2 lattice marked the highly active moderate-strength alkaline centers which resulted in the intrinsic activity soaring by an impressive 400% compared to the conventional Ni/CeO2 catalysts. Supported by H-2-TPD, Raman, and XPS analyses, a crucial revelation was unveiled where Ca modification induced a surge in the dispersion of active Ni species on Ni/CaCe-SG catalysts, thereby enhancing the abundant surface oxygen vacancies. In situ infrared spectroscopy further confirmed that the modified catalyst diligently followed the reaction pathway of CO3H* -> HCOO* -> CH4, culminating in the CO2 methanation activity with a low-temperature catalyst via the meticulous optimization of synthesis methods that propelled the process forward to the anticipated oxygen vacancy-induced moderate-strength alkaline centers.


Septiembre, 2024 | DOI: 10.1039/d4cy00679h

Materiales Ópticos Multifuncionales

Role of Inter-Particle Connectivity in the Photo-Carrier Cooling Dynamics in Perovskite Quantum Dot Solids

Tiede, DO; Koch, KA; Romero-Pérez, C; Ucer, KB; Calvo, ME; Galisteo-López, JF; Míguez, H; Kandada, ARS
Advanced Optical Materials, (2024) 2401483
DOI: 10.1002/adom.202401483

Abstract

Intraband carrier relaxation in quantum dots (QDs) has been a subject of extensive spectroscopic investigation for several decades, and have been used to optimize the efficiency of opto-electronic processes. In the past few years, metal halide perovskites-based QDs have been shown to exhibit slow hot-carrier cooling characteristics that are desirable for photo-energy harvesting technologies. While several mechanisms are proposed to rationalize the retardation of the cooling dynamics, including hot-phonon bottleneck and polaronic effects, the role of inter-particle connectivity in these dynamics is largely ignored. Here, an in-depth study of photo-excitation dynamics and carrier cooling on perovskite QD solids with varying degrees of inter-dot coupling is presented. It is observed that inter-particle connectivity has deterministic effects on the many-body interactions that are relevant for carrier cooling. These include carrier-carrier interactions that result in Auger-reheating of the carriers, and lattice characteristics that subsequently affect the phonon-assisted cooling dynamics. This spectroscopic study of ultrafast carrier dynamics in perovskite QD solids establishes inter-dot separation as a critical material design parameter for the optimization of photo-generated carrier temperature, which fundamentally determines the luminescence characteristics and thus the opto-electronic quality of the material.

The photo-excitation dynamics and carrier cooling in metal halide perovskite quantum dot solids are investigated here. Evidence for the deterministic role of inter-particle connectivity on the many-body interactions relevant to carrier cooling is discussed. These include carrier-carrier interactions that result in Auger-reheating of the carriers, and lattice coupling that subsequently affects the phonon-assisted cooling dynamics. image


Septiembre, 2024 | DOI: 10.1002/adom.202401483

Nanotecnología en Superficies y Plasma

Tailoring of Self-Healable Polydimethylsiloxane Films for Mechanical Energy Harvesting

Ghosh, K; Morgan, A; García-Casas, X; Kar-Narayan, S
ACS Applied Energy Materials, 7 (2024) 8185-8195
DOI: 10.1021/acsaem.4c01275

Abstract

Triboelectric nanogenerators (TENGs) have emerged as potential energy sources, as they are capable of harvesting energy from low-frequency mechanical actions such as biological movements, moving parts of machines, mild wind, rain droplets, and others. However, periodic mechanical motion can have a detrimental effect on the triboelectric materials that constitute a TENG device. This study introduces a self-healable triboelectric layer consisting of an Ecoflex-coated self-healable polydimethylsiloxane (SH-PDMS) polymer that can autonomously repair mechanical injury at room temperature and regain its functionality. Different compositions of bis(3-aminopropyl)-terminated PDMS and 1,3,5-triformylbenzene were used to synthesize SH-PDMS films to determine the optimum healing time. The SH-PDMS films contain reversible imine bonds that break when the material is damaged and are subsequently restored by an autonomous healing process. However, the inherent stickiness of the SH-PDMS surface itself renders the material unsuitable for application in TENGs despite its attractive self-healing capability. We show that spin-coating a thin layer (approximate to 32 mu m) of Ecoflex on top of the SH-PDMS eliminates the stickiness issue while retaining the functionality of a triboelectric material. TENGs based on Ecoflex/SH-PDMS and nylon 6 films show excellent output and fatigue performance. Even after incisions were introduced at several locations in the Ecoflex/SH-PDMS film, the TENG spontaneously attained its original output performance after a period of 24 h of healing. This study presents a viable approach to enhancing the longevity of TENGs to harvest energy from continuous mechanical actions, paving the way for durable, self-healable mechanical energy harvesters.


Septiembre, 2024 | DOI: 10.1021/acsaem.4c01275

Materiales de Diseño para la Energía y Medioambiente

Elucidating the Mechanism of Iron-Catalyzed Graphitization: The First Observation of Homogeneous Solid-State Catalysis

Hunter, RD; Takeguchi, M; Hashimoto, A; Ridings, KM; Hendy, SC; Zakharov, D; Warnken, N; Isaacs, J; Fernández-Muñoz, S; Ramirez-Rico, J; Schnepp, Z
Advanced Materials, 36 (2024) 2404170
DOI: 10.1002/adma.202404170

Abstract

Carbon is a critical material for existing and emerging energy applications and there is considerable global effort in generating sustainable carbons. A particularly promising area is iron-catalyzed graphitization, which is the conversion of organic matter to graphitic carbon nanostructures by an iron catalyst. In this paper, it is reported that iron-catalyzed graphitization occurs via a new type of mechanism that is called homogeneous solid-state catalysis. Dark field in situ transmission electron microscopy is used to demonstrate that crystalline iron nanoparticles “burrow” through amorphous carbon to generate multiwalled graphitic nanotubes. The process is remarkably fast, particularly given the solid phase of the catalyst, and in situ synchrotron X-ray diffraction is used to demonstrate that graphitization is complete within a few minutes.


Septiembre, 2024 | DOI: 10.1002/adma.202404170

Química de Superficies y Catálisis

Reactive Surface Explored by NAP-XPS: Why Ionic Conductors Are Promoters for Water Gas Shift Reaction

García-Moncada, N; Penkova, A; González-Castaño, M; Odriozola, JA
ACS Catalysis (2024).
DOI: 10.1021/acscatal.4c04287

Abstract

Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) experiments have been carried out in N-2 and N-2-H2O atmospheres on a Pt-based catalyst physically mixed with an Eu-doped ZrO2 ionic conductor as a function of temperature under realistic conditions of the water gas shift (WGS) reaction. This work aims to demonstrate the significant effect of having active H2O on the ionic conductor surface at reaction temperatures to provide it to Pt metal sites. The ionic conductor, Eu-doped zirconia matrix, presents defects (oxygen vacancies, O-v) that allows upon H2O dissociation the formation of a hydrogen-bonded molecular water layer favoring diffusion through a Grotthuss mechanism below 300 degrees C. In the presence of H2O, the O-v are occupied by hydroxyl species as observed in the Eu 4d spectra, which differentiate two types of Eu oxidation states. The Eu3+-to-Eu2+ atomic ratio increases with the occupancy of the O-v by hydroxyls. Moreover, while the Pt-based catalyst alone is unable to create Pt-OH bonds, the physical mixture of the Pt-based catalyst and the ionic conductor allows the formation of Pt-OH bonds from room temperature up to 300 degrees C. These data demonstrate that the increase in molecular water concentration on the ionic conductor surface up to 300 degrees C acts as a reservoir to provide water to the Pt surface, enhancing the catalyst performance in the WGS reaction, supporting the importance of the surface H2O concentration in the reaction kinetics.


Septiembre, 2024 | DOI: 10.1021/acscatal.4c04287

Materiales y Procesos Catalíticos de Interés Ambiental y Energético

In situ XRD and operando XRD-XANES study of the regeneration of LaCo0.8Cu0.2O3 perovskite for preferential oxidation of CO

Pereñiguez, RP; Ferri, D
Materials Today Sustainability, 27 (2024) 100867
DOI: 10.1016/j.mtsust.2024.100867

Abstract

Combinations of perovskite-type oxides with transition and precious metals exhibit remarkable regenerating properties that can be exploited for catalytic applications. The objective of the present work was to study the structural changes experienced by LaCo0.8Cu0.2O3 under reducing/oxidizing atmosphere (redox) and Preferential Oxidation of CO (PrOx, with high H2 concentration) conditions and their reversibility. LaCo0.8Cu0.2O3 was prepared by ultrasonic spray combustion and was characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Structural changes were followed by operando XRD and XAS. Metallic Co and Cu were segregated under both sets of reducing conditions and re-dissolved into the perovskite upon oxidation at 500 °C. Simultaneously, the perovskite-type oxide disappeared under reducing conditions and formed again upon high-temperature oxidation. The effects of this reversible reduction/dissolution of B-site metals on catalyst structure and activity were studied concerning the catalytic process of PrOx. The active phases of cobalt and copper oxides suffer a reduction during the PrOx reaction due to the high H2 concentration; thus, the application of an intermediate oxidation treatment can regenerate the catalytic system and the perovskite can be used for several cycles of reaction and regeneration. In contrast, when this intermediate oxidation treatment is not applied, the catalytic performance decreases in successive activity cycles.


Septiembre, 2024 | DOI: 10.1016/j.mtsust.2024.100867

Nanotecnología en Superficies y Plasma

Efficient tuning of the selectivity of Cu-based interface for electrocatalytic CO2 reduction by ligand modification

Yan, Y; Li, TX; Oliva-Ramirez, M; Zhao, YG; Wang, S; Chen, X; Wang, D; Schaaf, P; Wang, XY, Guo, GS
Materials Today Energy, 44 (2024) 101620
DOI: 10.1016/j.mtener.2024.101620

Abstract

The development of efficient strategies to tune the CO2RR selectivity of Cu-based catalytic interfaces, especially on specific domains, such as Cu (200) facets with high activity toward competitive hydrogenation evolution reaction (HER), remains a challenging task. In this work, Cu-based catalytic layers with thiocyanate (-SCN), cyanide (-CN), or ethylenediamine (-NH2R) coordination linkages are prepared on Cu nanocolumns arrays (Cu NCAs) with predominant (200) exposed facets. The coordination of these ligands induces more Cu+ species and inhibits the adsorption of H & lowast; on the Cu (200) facet, leading to enhanced CO2RR performance and substantially suppressing the competitive HER. The faradaic efficiency (FE) of Cu-SCN, Cu-CN, and Cu-NH2R NWAs for producing HCOOH, C2H4, and C1 mixture products (HCOOH and CO) reach to 66.5%, 21.1%, and 57.1%, respectively. In situ spectroscopic studies reveal Cu-SCN, Cu-CN, and Cu-NH2R exhibit more reasonable adsorption energy toward & lowast;OCHO, *CO, and *COOH intermediates, promoting the HCOOH, C2H4, and C1 mixture generation, respectively. This study might provide a new perspective for the development of high-performance Cu-based CO2RR catalytic electrodes based on the combination of various commercial free-standing Cu substrates and organic/inorganic ligands. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.


Agosto, 2024 | DOI: 10.1016/j.mtener.2024.101620

Materiales Coloidales

Realization of Extreme Nonstoichiometry in Gadolinium Aluminate Garnets by Glass Crystallization Synthesis

Fang, X; Castaing, V; Becerro, AI; Cao, WW; Veron, E; Zanghi, D; Dyer, MS; Genevois, C; Allix, M; Pitcher, MJ
Chemistry of Materials, 36 (2024) 8555-8563
DOI: 10.1021/acs.chemmater.4c02266

Abstract

The garnet aluminates RE3Al5O12 (RE = Gd - Lu, Y) are an important class of optical materials with a range of applications. Typically, they do not tolerate large deviations from ideal stoichiometry, and their luminescence properties are controlled by dopant selection rather than modification of the host structure. Here, we use glass crystallization as a nonequilibrium synthesis route to a new family of highly nonstoichiometric gadolinium aluminate garnets, of formula Gd3+xAl5-xO12 with x <= 0.60. Remarkably, this range is much broader than the previously reported Y3+xAl5-xO12 series (x <= 0.4), despite the vast size contrast between Al3+ and Gd3+, which are forced to share a crystallographic site in the nonstoichiometric materials: the endmember Gd3.6Al4.4O12 lies halfway between ideal garnet and perovskite stoichiometries, with 30% of its octahedral Al3+ sites substituted by Gd3+. In principle, this crystal chemistry should allow the synthesis of phosphor systems with rare-earth activators distributed over two different cation sublattices. To probe the response of luminescence properties to extreme nonstoichiometry in Gd3+xAl5-xO12, we synthesized three model phosphor systems by doping with Ce3+, Tb3+, or Tm3+/Yb3+ and found that upconversion (Tm3+/Yb3+) phosphors have the most potential to be tuned by this approach. These results demonstrate that highly nonstoichiometric garnet aluminates are not limited to small rare-earth hosts such as YAG, opening new opportunities for development of different garnet-based optical and magnetic materials.


Agosto, 2024 | DOI: 10.1021/acs.chemmater.4c02266

Materiales Ópticos Multifuncionales

Transparent porous films with real refractive index close to unity for photonic applications

Miranda-Muñoz, JM; Viaña, JM; Calvo, ME; Lozano, G; Míguez, H
Materials Horizons (2024).
DOI: 10.1039/d4mh00826j

Abstract

Herein, we demonstrate mechanically stable large-area thin films with a purely real refractive index (n) close to 1 in the optical range. At specific wavelengths, it can reach values as small as n = 1.02, the lowest reported for thin solid slabs. These are made of a random network of interwoven spherical silica shells, created by chemical vapour deposition of a thin layer of silica on the surface of randomly packed monodisperse polymer nanoparticles that form a film. Thermal processing of the composites results in highly porous silica-based transparent thin films. We demonstrate the potential of this approach by making novel photonic materials such as strong optical diffusers, built by integrating scattering centers within the ultralow n transparent films, or highly efficient light-emitting slabs, in which losses by total internal reflection are practically absent as a result of the almost null optical impedance at the film-air interface.


Agosto, 2024 | DOI: 10.1039/d4mh00826j

Fotocatálisis Heterogénea: Aplicaciones

Levofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight

Jojoa-Sierra, SD; Jaramillo-Pérez, C; Serna-Galvis, EA; García-Rubio, I; Hidalgo, MC; Navío, JA; Ormad, MP; Torres-Palma, RA; Mosteo, R
Water, 16(17) (2024) 2434
DOI: 10.3390/w16172434

Abstract

Water quality and usability are global concerns due to microbial and chemical pollution resulting from anthropogenic activities. Therefore, strategies for eliminating contaminants are required. In this context, the removal and decrease in antibiotic activity (AA) associated with levofloxacin (LEV), using TiO2 and Ag/TiO2 catalysts, with and without sunlight and peroxydisulfate, was evaluated. Additionally, the disinfection capacity of catalytic systems was assessed. The catalysts were synthesized and characterized. Moreover, the effect of Ag doping on visible light absorption was determined. Then, the photocatalytic treatment of LEV in water was performed. The materials characterization and EPR analyses revealed that LEV degradation and AA decrease were ascribed to a combined action of solar light, sulfate radical, and photocatalytic activity of the TiO2-based materials. Also, the primary byproducts were elucidated using theoretical analyses (predictions about moieties on LEV more susceptible to being attacked by the degrading species) and experimental techniques (LC-MS), which evidenced transformations on the piperazyl ring, carboxylic acid, and cyclic ether on LEV. Moreover, the AA decrease was linked to the antibiotic transformations. In addition, the combined system (i.e., light/catalyst/peroxydisulfate) was shown to be effective for E. coli inactivation, indicating the versatility of this system for decontamination and disinfection.


Agosto, 2024 | DOI: 10.3390/w16172434

Química de Superficies y Catálisis

FGD-Gypsum Waste to Capture CO2 and to Recycle in Building Materials: Optimal Reaction Yield and Preliminary Mechanical Properties

Moreno, V; González-Arias, J; Ruiz-Martinez, JD; Balart-Gimeno, R; Baena-Moreno, FM; Leiva, C
Materials, 17 (2024) 3774
DOI: 10.3390/ma17153774

Abstract

The use of waste to capture CO2 has been on the rise, to reduce costs and to improve the environmental footprint. Here, a flue gas desulfurization (FGD) gypsum waste is proposed, which allows us to obtain a CaCO3-based solid, which should be recycled. The CO2 capture stage has primarily been carried out via the direct carbonation method or at high temperature. However, a high energy penalty and/or long reaction times make it unattractive from an industrial perspective. To avoid this, herein an indirect method is proposed, based on first capturing the CO2 with NaOH and later using an aqueous carbonation stage. This allows us to capture CO2 at a near-ambient temperature, improving reaction times and avoiding the energy penalty. The parameters studied were Ca2+/CO32− ratio, L/S ratio and temperature. Each of them has been optimized, with 1.25, 100 mL/g and 25 °C being the optimal values, respectively, reaching an efficiency of 72.52%. Furthermore, the utilization of the produced CaCO3 as a building material has been analyzed. The density, superficial hardness and the compressive strength of a material composed of 10 wt% of CaCO3 and 90 wt% of commercial gypsum, with a water/solid ratio of 0.5, is measured. When the waste is added, the density and the mechanical properties decreased, although the compressive strength and superficial hardness are higher than the requirements for gypsum panels. Thus, this work is promising for the carbonation of FGD-gypsum, which involves its chemical transformation into calcium carbonate through reacting it with the CO2 of flue gasses and recycling the generated wastes in construction materials


Agosto, 2024 | DOI: 10.3390/ma17153774

Química de Superficies y Catálisis

Integrating catalytic tandem reactions for the next of biofuels: A

Blay-Roger, R; Carrasco-Ruiz, S; Reina, TR; Bobadilla, LF; Odriozola, JA; Nawaz, MA
Chem Catalysis, 4 (2024) 100987
DOI: 10.1016/j.checat.2024.100987

Abstract

In this piece, we explore the transformative potential of sustainable biofuel production as a solution to the energy crisis and a pivotal element in realizing the environmental and societal ambitions of Society 5.0. Through a critical examination of "bottom-up"and "topdown"strategies for converting bio-feedstocks sourced from anthropogenic activities into renewable fuels, the work underscores the need for innovation in catalysts and process intensification. By highlighting the advances and challenges in harnessing unconventional feedstocks and integrating renewable energy, this work points to a future where biofuels stand as a cornerstone of a sustainable energy landscape. The significance of this discussion extends beyond the technical realm, offering a vision for a circular economy that reduces dependence on fossil fuels, addresses climate change, and promotes global energy security. It calls for a united front among researchers, industry leaders, and policymakers to drive the biofuel sector toward efficiency, scalability, and widespread adoption.


Agosto, 2024 | DOI: 10.1016/j.checat.2024.100987

Reactividad de Sólidos - Tribología y Protección de Superficies

BN nanosheets reinforced zirconia composites: An in-depth microstructural and mechanical study

Muñoz-Ferreiro, C; Reveron, H; Rojas, TC; Reyes, DF; Cottrino, S; Moreno, P; Prada-Rodrigo, J; Morales-Rodriguez, A; Chevalier, J; Gallardo-López, A; Poyacto, R
Journal of the European Ceramic Society, 44(10) (2024) 5846-5860
DOI: 10.1016/j.jeurceramsoc.2024.02.002

Abstract

This paper deals with the effect of hydroxylated boron nitride nanosheets (BNNS) incorporation on the microstructural and mechanical features of zirconia ceramics. Few-layered BNNS were synthesized via a simple hydroxide-assisted planetary ball milling exfoliation technique. 3 mol% yttria tetragonal zirconia polycrystal (3Y-TZP) with 2.5 vol% BNNS powders were prepared by an environmentally friendly process in water, and spark-plasma sintered at three temperatures to explore the in-situ reduction of the functionalized BNNS. An exhaustive study by (S)TEM techniques was performed to elucidate the influence of the sintering temperature on the matrix and the 3Y-TZP/BNNS interfaces, revealing that BNNS were homogeneously distributed throughout the matrix with an abrupt transition at 3Y-TZP/BNNS interfaces. BNNS effectively hindered slow crack growth, thus increasing the composite's crack growth resistance by about 30 %. A 1 MPa·m1/2 rising R-curve was also induced by crack bridging.


Agosto, 2024 | DOI: 10.1016/j.jeurceramsoc.2024.02.002

Materiales Ópticos Multifuncionales

Trap Depth Distribution Determines Afterglow Kinetics: A Local Model Applied to ZnGa2O4:Cr3+

Romero, M; Castaing, V; Lozano, G; Míguez, H
Journal of Physical Chemistry Letters, (2024).
DOI: 10.1021/acs.jpclett.4c01296

Abstract

Persistent luminescence materials have applications in diverse fields such as smart signaling, anticounterfeiting, and in vivo imaging. However, the lack of a thorough understanding of the precise mechanisms that govern persistent luminescence makes it difficult to develop ways to optimize it. Here we present an accurate model to describe the various processes that determine persistent luminescence in ZnGa2O4:Cr3+, a workhorse material in the field. A set of rate equations has been solved, and a global fit to both charge/discharge and thermoluminescence measurements has been performed. Our results establish a direct link between trap depth distribution and afterglow kinetics and shed light on the main challenges associated with persistent luminescence in ZnGa2O4:Cr3+ nanoparticles, identifying low trapping probability and optical detrapping as the main factors limiting the performance of ZnGa2O4:Cr3+, with a large margin for improvement. Our results highlight the importance of accurate modeling for the design of future afterglow materials and devices.


Agosto, 2024 | DOI: 10.1021/acs.jpclett.4c01296

Materiales de Diseño para la Energía y Medioambiente

A zirconia/tantalum biocermet: in vitro and in vivo evaluation for biomedical implant applications

Smirnov, A; Guitián, F; Ramírez-Rico, J; Bartolomé, JF
Journal of Materials Chemistry B (2024)
DOI: 10.1039/d4tb01158a

Abstract

A biocermet made of zirconia/20 vol% tantalum (3Y-TZP/Ta) is a new composite with exceptional capabilities due to a combination of properties that are rarely achieved in conventional materials (high strength and toughness, cyclic fatigue resistance and flaw tolerance, wear resistance, corrosion resistance, electrical conductivity, etc.). In this study, for the first time, the biomedical performance of a 3Y-TZP/Ta biocermet was evaluated in detail. Its in vitro biocompatibility was assessed using mesenchymal stem cell culture. The effectiveness of in vivo osteointegration of the biocermet was confirmed 6 months after implantation into the proximal tibiae of New Zealand white rabbits. In addition, the possibility of using magnetic resonance imaging (MRI) for medical analysis of the considered biocermet material was studied. The 3Y-TZP/Ta composite showed no injurious effect on cell morphology, extracellular matrix production or cell proliferation. Moreover, the implanted biocermet appeared to be capable of promoting bone growth without adverse reactions. On the other hand, this biocermet demonstrates artefact-free performance in MRI biomedical image analysis studies, making it more suitable for implant applications. These findings open up possibilities for a wide range of applications of these materials in orthopedics, dentistry and other areas such as replacement of hard tissues.


Agosto, 2024 | DOI: 10.1039/d4tb01158a

Materiales Coloidales

Mixed oxide ion-proton conductivity and the ionic migration mechanism in isolated tetrahedral LaVO4 by acceptor doping

Geng, XY; Hang, GQ; Fernadez-Carrion, AJ; Ming, X; Deng, SH; He, LH; Kuang, XJ; Yang, XY
Inorganic Chemistry Frontiers, 11 (2024)
DOI: 10.1039/D4QI00870G

Abstract

Solid-state oxide ion and proton conductors are garnering significant attention due to their high ionic conductivity and potential applications in a range of electrochemical devices, including solid oxide fuel cells and gas sensors. In this study, we report the influence of partial substitution of La3+ in isolated tetrahedral LaVO4 ceramics with 0.01 mol of alkaline-earth metals Ca2+, Sr2+ and Ba2+ on the phase stability and electrical properties. It was found that acceptor doping effectively enhances mixed oxide ion and proton conductivities, with Sr2+ substitution yielding the highest conductivity, achieving ∼10−3 S cm−1 at 900 °C under a wet O2 atmosphere. DFT calculations and ab initio molecular dynamics simulations revealed that protons preferentially form hydrogen bonds with the lattice oxygen near the dopants and migrate through a continuous process of hopping and rotation between inter- and intra-tetrahedral VO4 groups. Additionally, the existence of oxygen vacancies facilitates the formation of V2O7 dimers through sharing corners with adjacent isolated VO4 tetrahedra, enabling ion exchange through a synergistic mechanism involving V2O7 dimer breaking and reforming. This research highlights the critical role of the deformation and rotational flexibility of isolated tetrahedral units in facilitating oxide ion and proton transport, underscoring the potential for developing mixed oxide ion and proton conductors in oxygen vacancy-deficient oxides with tetrahedral-based structures.


Agosto, 2024 | DOI: 10.1039/D4QI00870G

 

 

 

 

 

icms