Menú secundario

Artículos SCI



2024


Química de Superficies y Catálisis

Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation: An economic approach

Judith González-Arias, Guillermo Torres-Sempere, Miriam González-Castaño, Francisco M. Baena-Moreno, Tomás R. Reina
Journal of Environmental Sciences, 140 (2024) 69-78

Show abstract ▽

Herein we study the economic performance of hydrochar and synthetic natural gas co-production from olive tree pruning. The process entails a combination of hydrothermal carbonization and methanation. In a previous work, we evidenced that standalone hydrochar production via HTC results unprofitable. Hence, we propose a step forward on the process design by implementing a methanation, adding value to the gas effluent in an attempt to boost the overall process techno-economic aspects. Three different plant capacities were analyzed (312.5, 625 and 1250 kg/hr). The baseline scenarios showed that, under the current circumstances, our circular economy strategy in unprofitable. An analysis of the revenues shows that hydrochar selling price have a high impact on NPV and subsidies for renewable coal production could help to boost the profitability of the process. On the contrary, the analysis for natural gas prices reveals that prices 8 times higher than the current ones in Spain must be achieved to reach profitability. This seems unlikely even under the presence of a strong subsidy scheme. The costs analysis suggests that a remarkable electricity cost reduction or electricity consumption of the HTC stage could be a potential strategy to reach profitability scenarios. Furthermore, significant reduction of green hydrogen production costs is deemed instrumental to improve the economic performance of the process. These results show the formidable techno-economic challenge that our society faces in the path towards circular economy societies.


Junio, 2024 | DOI: 10.1016/j.jes.2023.04.019

Reactividad de Sólidos

Ca-based materials derived from calcined cigarette butts for CO2 capture and thermochemical energy storage

Amghar, N; Moreno, V; Sánchez-Jiménez, PE; Perejón, A; Pérez-Maqueda, LA
Journal of Environmental Sciences, 140 (2024) 230-241

Show abstract ▽

Cigarette butts (CBs) are one of the most common types of litter in the world. Due to the toxic substances they contain, the waste generated poses a harmful risk to the environment, and therefore there is an urgent need for alternative solutions to landfill storage. Thus, this work presents a possible revalorization of this waste material, which implies interesting environmental benefits. CBs were used as sacrificial templates for the preparation of CaO-based materials by impregnation with calcium and magnesium nitrates followed by flaming combustion. These materials presented enhanced porosity for their use in the Calcium Looping process applied either to thermochemical energy storage or CO2 capture applications. The influence of the concentration of Ca and Mg in the impregnating solutions on the multicycle reactivity of the samples was studied. An improved multicycle performance was obtained in terms of conversion for both applications.


Junio, 2024 | DOI: 10.1016/j.jes.2023.07.028

Química de Superficies y Catálisis

A novel membrane-based process to concentrate nutrients from sidestreams of an Urban Wastewater Treatment Plant through captured carbon dioxide from biogas

González-Arias, J; Baena-Moreno, FM; Rodríguez-Galán, M; Navarrete, B; Vilches-Arenas, LF
Science of the Total Environment, 931 (2024) 172884

Show abstract ▽

Among the challenges that wastewater treatment plants face in the path towards sustainability, reducing CO 2 emissions and decrease the amount of waste highlight. Within these wastes, those that can cause eutrophication, such as nutrients (nitrogen and phosphorous) are of great concern. Herein we study a novel process to concentrate nutrients via membrane technology. In particular, we propose the use of forward osmosis, applying the carbonated solvent which contains the CO 2 captured from the biogas stream as draw solution. This carbonated solvent has a high potential osmotic pressure, which can be used in forward osmosis to concentrate the nutrients stream. To this end, we present the results of an experimental plan specifically designed and performed to evaluate two main parameters: (1) nutrients concentration; and (2) water recovery. The process designed involves pH adjustment, membrane filtration to separate solids, pH reduction and forward osmosis concentration of nutrients. With this process, concentrations factor for nutrients in between 2 and 2.5 and water recovery of approximately 50 % with water flux of 7 to 8 L/(m 2 h) can be achieved.


Junio, 2024 | DOI: 10.1016/j.scitotenv.2024.172884

Reactividad de Sólidos

In situ study on enhanced plastic deformability of Lanthanum-doped Bismuth ferrite processed by flash sintering

Yang, B; Sánchez-Jiménez, PE; Niu, TJ; Sun, TY; Shang, ZX; Cho, J; Perejón, A; Shen, C; Pérez-Maqueda, LA; Tsakalakos, T; Wang, HY; Zhang, XH
Journal of the European Ceramic Society, 44 (2024) 3985-3994

Show abstract ▽

BiFeO3 is a promising multiferroic material for versatile device applications due to its co-existence of magnetic (i.e., antiferromagnetic) and ferroelectric ordering at room temperature. While its functional properties have been extensively investigated, the exploration of its mechanical behavior was limited mostly to the thin-film form of BiFeO3. In this work, we conducted in situ micropillar compression experiments to investigate the deformation behavior of La-doped BiFeO3 (La-BFO) samples processed by both conventional and flash sintering methods. The conventionally sintered La-BFO exhibited limited deformability at room temperature and 450 degrees C. In contrast, the deformability of the flash-sintered La-BFO specimens was substantially improved by nearly 100% at both testing temperatures. Detailed post-mortem studies suggest that preexisting dislocations and wide anti-phase boundaries introduced during flash sintering can toughen flash-sintered La-BFO by easing dislocation migration and ferroelastic domain switching. This study provides a fresh perspective to design an advanced multifunctional system with improved mechanical properties.


Junio, 2024 | DOI: 10.1016/j.jeurceramsoc.2023.12.099

Materiales de Diseño para la Energía y Medioambiente

Transparent, plasticized cellulose-glycerol bioplastics for food packaging applications

Benítez, JJ; Florido-Moreno, P; Porras-Vazquez, JM; Tedeschi, G; Athanassiou, A; Heredia-Guerrero, JA; Guzman-Puyol, S
International Journal of Biological Macromolecules (2024) 132956

Show abstract ▽

Free-standing films have been obtained by drop-casting cellulose-glycerol mixtures (up to 50 wt% glycerol) dissolved in trifluoroacetic acid and trifluoroacetic anhydride (TFA:TFAA, 2:1, v:v). A comprehensive examination of the optical, structural, mechanical, thermal, hydrodynamic, barrier, migration, greaseproof, and biodegradation characteristics of the films was conducted. The resulting cellulose-glycerol blends exhibited an amorphous molecular structure and a reinforced H-bond network, as evidenced by X-ray diffraction analysis and infrared spectroscopy, respectively. The inclusion of glycerol exerted a plasticizing influence on the mechanical properties of the films, while keeping their transparency. Hydrodynamic and barrier properties were assessed through water uptake and water vapor/oxygen transmission rates, respectively, and obtained values were consistent with those of other cellulose-based materials. Furthermore, overall migration levels were below European regulation limits, as stated by using Tenax as a dry food simulant. In addition, these bioplastics demonstrated good greaseproof performance, particularly at high glycerol content, and potential as packaging materials for bakery products. Biodegradability assessments were carried out by measuring the biological oxygen demand in seawater and high biodegradation rates induced by glycerol were observed.


Junio, 2024 | DOI: 10.1016/j.ijbiomac.2024.132956

 

 

 

 

 

icms