Menú secundario

Engineered Ceramics for Extreme Environments

Broad objectives:
Development of a new generation of advanced ceramics that can withstand extreme environments, The effective immobilization of the industrial wastes
Specific objectives:
Develop processing routes for silicon carbide-based ceramics to customize its properties aimed to specific application such as resistive elements, high temp./ abrasion resistant parts, medical implants
Specific advantages
Pioneer laboratory at international scale in the development of bioinspired SiC-based ceramics and tailoring of its properties, Strong expertise in the study of mechanical behaviour and microstructure in ceramics and the study of lamellar silicates and functional mesoporous materials, Strong industrial interaction as driving force of the research orientation

Name Phone and Extension email web
Castro Arroyo, Miguel Angel 954 48 95 46 Materiales de Diseño para la Energía y Medioambiente
Jiménez Melendo, Manuel 954 55 97 36 Materiales de Diseño para la Energía y Medioambiente
Malet Maenner, María del Pilar 954 48 95 27 Materiales de Diseño para la Energía y Medioambiente
Martínez Fernández, Julián 954 55 28 94 Materiales de Diseño para la Energía y Medioambiente
Ramírez de Arellano-López, Antonio 954 55 97 32 Materiales de Diseño para la Energía y Medioambiente
Científicos Titulares
Name Phone and Extension email web
Alba Carranza, María Dolores 954 48 95 46 Materiales de Diseño para la Energía y Medioambiente
Benítez Jiménez, José Jesús 954 48 95 51 Materiales de Diseño para la Energía y Medioambiente
Profesores Titulares
Name Phone and Extension email web
Bravo León, Alfonso 954 55 09 37 Materiales de Diseño para la Energía y Medioambiente
Clauss Klamp, Caroline Maria 954 55 09 41 Materiales de Diseño para la Energía y Medioambiente
Investigadores/Doctores Contratados
Name Phone and Extension email web
Ramírez Rico, Joaquín 954 55 97 58 Materiales de Diseño para la Energía y Medioambiente
Becarios Predoctorales
Name Phone and Extension email web
Cabezas Rodríguez, Rafael 954 55 09 54 Materiales de Diseño para la Energía y Medioambiente
Orihuela Espina, María del Pilar Materiales de Diseño para la Energía y Medioambiente
Osuna Barroso, Francisco Javier 954 48 95 00 + ext. 90 92 14 Materiales de Diseño para la Energía y Medioambiente
Personal Contratado
Name Phone and Extension email web
Gómez Martín, Aurora Materiales de Diseño para la Energía y Medioambiente

Bioceramic Materials for New Biomass Domestic Bolier Concept based on Porous Combustion for a Wide Biomass/Residues Feedstock

Research head: Joaquín Ramírez Rico
Period: 30-12-2016 / 29-12-2019
Financial source: Ministerio de Economía y Competitividad
Code: MAT2016-76526-R
Research group: Julián Martínez Fernández, Manuel Jiménez Melendo


EU generates more than five tons of waste per person every year and about 60 % is organic waste. Current biomass domestic boiler technology does not allow the use of these residues with high efficiency, ultra-low emissions and high reliability operation. The main objective of this proposal is the development of a new concept of biomass domestic boiler technology able to combine these characteristics for operation with multiple biomass/residues blends. It is based on the integration of novel bioceramic porous materials matrices in combustion chamber and gases pathflow with functions as microporous combustors, particles filters and heat accumulators. These functions are simultaneous depending on the region of the boiler. Matrices of bioceramic materials are developed from wood precursors to obtain SiC elements through a process patented by the University of Seville. It uses local raw material, and produces parts with tailor made microstructure/properties, adequate for high temperature and reactive operation. Products with complex geometries can be obtained at relatively low cost compared with other materials of similar chemical and mechanical properties. The integration of components based on these materials allows new designs of biomass boilers with high control of combustion, temperature and particle emission. It avoids ash sintering and melting, acting on the formation and evolution mechanisms of ash and dioxins and activating the complete oxidation of CO and soots. The new concept allows the operation to a wider biomass/residues feedstock with low emissions and low maintenance even with fuels with high ash content, produced from many residues, solving main challenges for their extended use and increasing the European fuel resources for domestic heating. Domestic heating in Europe consumes 30% of the total energy. The proposal includes prototypes development, fuel supply characteristics and preparation (geometry, compactness, composition, etc.) and combustion products management. Biomass/residues blends from agriculture, forestry, olive oil industry among others will be tested both in laboratory . 

Genetic basis of the composition and biophysical properties of tomato fruit cuticle: exploiting natural variability

Research head: Fafael Fernández Muñoz (IHSM)
Period: 01-01-2016 / 31-12-2018
Financial source: Ministerio de Economía y Competitividad
Code: AGL2015-65246-R
Research group: José Jesús Benítez, Fernando Gallardo Alba (UMA), Antonio Heredia Bayona (IHSM)


Production of fruits with high quality and added value is currently an important challenge in agriculture. The cuticle that covers the outer epidermal cell walls plays a significant role in tomato fruit quality mainly in its external appearance (color, glossiness, texture, uniformity), in the occurrence of disorders of great economical importance such as fruit cracking, and also in the maintanance of fruit water status during postharvest. In previous projects (AGL2006-12494, AGL2009-12134 and AGL2012-32613) of which this can be considered a continuation, the important role of cuticle on fruit cracking and how changes in cuticle biomechanical properties affect cracking were highlighted. Moreover, it was shown that cuticle flavonoids, which are involved in the color of ripen fruits, play an important role in the regulation of cuticle synthesis and water permeability. Both a recombinant inbred (RIL) and an introgression line (IL) S. lycopersicum x S. pimpinellifolium populations will be used for validation and identification of QTLs and candidate genes involved in the deposition of different cuticle components (waxes, cutin, flavonoids, polysaccharides) and also for identification of QTL/genomic regions associated to unstudied cuticle traits such as thickness and density. This multidisciplinary approach, that includes cuticle biophysical analyses, will allow designing tomato cultivars with adequate biomechanical and hydrodinamical properties to reduce cracking, maintaining fruit water status during postharvest and avoiding skin traits undesirable for consumers. A collection of wild tomato species accessions will be studied and will provide insights in cuticle evolution within the Lycopersicon taxon. This evolutionary study could reveal different combinations of components and structures that will be useful to increase the current cuticle variability for future breeding programs.

Susteinable industrial waste treatment: designed adsorbent materials and bionanocomposites for inmobilizing heavy metals and fision products

Research head: Maria Dolores Alba Carranza
Period: 01-01-2016 / 31-12-2018
Financial source: Ministerio de Economía y Competitividad
Code: MAT2015-63929-R
Research group: Miguel Angel Castro Arroyo, Ana Carmen Perdigón Aller, María del Mar Orta Cuevas


The focus of the project addresses the requirement of advanced environmental technology methodologies for removing pollutants. Recently, the interest and efforts to develop new technologies for more efficient treatments for the immobilization and the revaluation of hazardous waste are increasing in  R & D plans. The overall object of the project is based on the design of a strategy of functionalization of highly charged swelling phyllosilicates and their later transformation on bionanocomposite for the effective retention and immobilization of hazardous waste, both cationic and anionic. This object represents a qualitative change in the work that is being nowdays developed in the field of model adsorbents systems with environmental applications that will improve the quality life of the population and the environmental conservation, because the designed functionalization of the synthetic silicates will allow the adsorption of a wide range of adsorbents in different oxidation states, cationic or anionic. The objectives are conformed to the Focus Area WASTE of the H2020 program and it is developed on the 2nd and 5th challenge of the H2020 program and on the 5th and 3rd challenge of the national research program.

The project has attracted interest from various observers companies, EPOs, (ENRESA and the Water and Local Energy Agency and Sustainability of the City of Seville), the public-private collaboration being promoted. Therefore, the research combines the basic principles of the National Strategy of Science and Technology: Putting the R&D&I at the service of citizens, social welfare and sustainable development, making the R&D&I a factor of improving business competitiveness (transfer of results to the private sector, see interest of EPOs) and recognize and promote R&D&I as an essential element for the generation of new excellence knowledge.

The viability of the proposal is ensured, first, because the research team, RT, has accomplished the synthesis of hydratable high charged phyllosilicates, with a novel and original method that allows setting the material desired charge, and, later, has successfully achieved their organofunctionalization (patent ES 2 362 597 B1). Second, the RT has developed the required methodology for the development of this project in closed scientific collaboration with other well recognized international groups (i.e. CNRS-University of Lille, University of Cambridge...). The RT enhances the clustering of their capabilities and scientific-technical skills which are essential to address this proposal with a remarkable transverse character.

Adsorption mechanisms study of harmful anionic pollutants by tailor-made aluminosilicates

Research head: Esperanza Pavón González
Period: 01-02-2015 / 28-02-2017
Financial source: Junta de Andalucía
Code: TAHUB-082. Programa Talent HUB
Research group:


The scientific, technological and industrial development carried out in the second half of last century has caused an increasing pollution in the natural environment. Consequently, a widespread recognition of the need to develop technologies and strategies for pollution control has arisen in the recent times. The main objective of this Project is to design swelling layered silicates of high charge and their surface modification for an effective activity with respect to the retention and immobilization of toxic and dangerous anionic wastes.
The proposed methodology consists on the synthesis of high charge swelling mica with isomorphic substitution of Si4+ by Al3+ with a charge density in the range of brittle mica but with a cation exchange and swelling capacities unusual in these silicates. In order to enhance the anionic adsorption capacity, the mica will be functionalized in the surface with magnetite and with the inclusion of alkylammonium cations in their interlayer space.
An immobilization protocol of harmful anionic products like AsO42-, SO42- will be established, using the best adsorbent in function of both the structure and the funcionalization of the highly charged swelling mica. Afterwards, the applicability of these adsorption reactions will be tested in actual contaminated soils from Chili and Spain.

Development of processes for the catalytic combustion of hydrogen and study of the integration in devices for portable applications

Research head: Asunción Fernández Camacho
Period: 16-05-2014 / 15-05-2016
Financial source: Junta de Andalucía
Code: P12-TEp-862
Research group: Julián Martínez, Gisela Arzac, Dirk Hufschmidt, Joaquín Ramírez, M.Carmen Vera, Vanda Godinho, Lionel Cervera, T.Cristina Rojas, Olga Montes, Mariana Paladini, Jaime Caballero-Hernández


Hydrogen is an attractive candidate as a vector for storage and transport of energy in the context of an increased use of renewable and clean energies. The production and use of energy based on hydrogen technology is particularly important for small-scale portable (and potentially scalable for stationary) applications. In this project the process of catalytic (controlled) combustion of hydrogen will be investigated in the various aspects that could lead to a final integrated configuration with a H2 generation system for portable applications. For that the project will take advantage of the synergy of integrating two researcher groups from the PAI: i) The TEP217 group, specialists in storage and generation of hydrogen based on metal hydrides, complex hydrides and hydride composites reactive systems; and in the use of catalysts and additives to control and improve the kinetics of these processes. ii) The FQM342, specialist group for the fabrication of porous ceramics of high interest as catalyst supports for harsh combustion environments. Further collaboration is completed with the participation of the company Abengoa Hidrógeno SA that will be involved as sub-contractor as specialist in systems for the production and storage of hydrogen.
In particular we will work on this project in the following lines:
1.- Development of catalysts and supports for catalytic combustion. Typically porous biomorphic silicon carbide ceramics and classic noble metal catalysts, as well as new low cost catalysts to be developed in the project.
2.- Development of reactors needed for the study of the catalytic combustion. Typically hydrogen flows from a few ml/min to the scale of a H2 generator already available in the range 0.5 to 1.5 L/min.
3.- Coupling the catalytic combustion system with a portable hydrogen generation systems that we have developed in previous projects.
4.- Application of the sputtering technology in an exploratory manner in this project to deposit the catalyst materials for the H2 catalytic combustion on porous substrates.
5.- Microstructural and chemical characterization of the supports and catalysts in the nanoscale to follow the procedures of synthesis and evolution in operation.


Inmobilization of heavy metals by synthetic high-charged organomicas: Test at laboratory scale

Research head: María Dolores Alba Carranza
Period: 16-05-2014 / 16-02-2019
Financial source: Junta de Andalucía
Code: P12-FQM-567
Research group:


The focus of the project addresses the environmental technological requirement to develop advanced methods for removing pollutants. The interest and efforts to develop new technologies aimed at more efficient treatment in detention and revaluation of hazardous waste is increasing in R & D plans. It is in this scenario where this project should be framed and in particular in the framework of the management of heavy metal cations, issue of high public interest in this decade.

Since the second half of the twentieth century, humanity has faced a huge scientific and technological development that is responsible for increased environmental pollution. As an example, we can mention two problems that are currently of concern and action of the Andalusian: Andalusian coastal pollution and urban wastewater. Therefore, this is a complex problem that pollutants sources are varied of origin and routes followed by various pollutants are diverse and, frequently, it is beyond the control necessary to avoid urban undesirable effects on the natural environment and. Therefore, a basic level research is demaned to implement the necessary mechanisms for the immobilization of such harmful cations.

The objectives and scope of this project are based on advances made by other research groups in the management of these types of contaminants and the latest research conducted by the research team that allowed design expandable high-charged layered silicates with special properties as precursors for the retention of harmful residues. Therefore, it is proposed in this project the organofunzionalization of such synthetic micas with thiol groups or alkylammonium cations of varying chain length and evaluation of its adsorption capacity and irreversible retention of heavy metals.

Bio-ceramics for diesel engine particulate filters

Research head: Julián Martínez Fernández / Ricado Chacartegui
Period: 01-01-2014 / 31-12-2016
Financial source: Ministerio de Economía y Competitividad
Code: MAT2013-41233-R (Programa Retos)
Research group: José Antonio Becerra Villanueva, Alfonso Bravo León, Manuel Jiménez Melendo, Antonio Ramírez de Arellano López, Joaquín Ramirez Rico, Francisco Varela Feria


The importance of controlling particulate emissions from diesel engines is essential given its volume and the associated environmental and economic impact. Control systems based on modifications of the combustion process in the engine are not sufficient to meet the requirements of current regulations, less future ones, and therefore it must necessarily be employed post treatment systems such as filters. There is considerable scope for improving them both in reliability, degradation of control performance, durability, multifuel operation and cost reduction.

This project will assess the development and manufacturing of regenerative particulate filter for diesel engines to improve the current system specifications, based on a new generation of ceramic bio-derivated materials, with integrated systems for particle combustion. This objectives will be achieved integrating researchers synergies from: i ) Thermal Engines and Machines Group, GMTS , specialists in internal combustion engines ii ) Multifunctional Biomimetic Materials Group, MBM, specialists in obtaining bio-derivated porous ceramic as well as physical, chemical and microstructural characterization. In addition, the project is completed with the collaboration of companies in assessing technology and its industrial applicability.

The following research lines will be addressed:

- Determination of processing routes that enable the development of filter elements with suitable physical, and chemical properties, based on prior knowledge in bio-derivated materials and new technologies regarding the use of SiO2 gels.
- Identification of suitable catalysts and systems for its deposition.
- Manufacture of the filter elements consisting of porous support and catalyst.
- Thorough characterization of the physical, chemical and microstructural properties of interest for the application.
- Development of activation systems for the filter regeneration.
- Design and manufacturing of the filters with suitable geometry and prototype dimensions.
- Pilot unit design and study of the integration and operation of engine.
- Final design of the filter for industrial facility.

Previous studies developed by MBM in these bio-derivated materials have demonstrated their potential as gas filter elements at high temperatures in coal gasification plants, which supports the likelihood of success of this project, which will address the improvements needed to develop the technology in the combustion conditions of diesel engines, under dynamic conditions in vehicles and regenerative filters.

A reduction of pollutant emissions from diesel engines would have a great environmental impact, health and economic development, with about 100 million diesel vehicles circulating in Europe and a related industry with over 2 million direct jobs and growing trend in market. This project addresses the Social Challenge 3 Horizon 2020, Secure, clean and efficient energy. In addition, using bioceramics allows replacement of metal components used today, which also aligns with the Social Challenge 5 of the Horizon 2020 in search of alternatives to essential raw materials in existing applications by reducing dependence on imports and sustainability of applications.

The obtention of fatty polyhydroxyalcanoate (PHA) bioplastics from peels residues of commercial fruits

Research head: José Jesús Benítez Jiménez
Period: 16-05-2013 / 15-05-2016
Financial source: Junta de Andalucía
Code: P11-TEP-7418 (Proyecto de Excelencia)
Research group: Antonio Heredia Bayona, Miguel Angel San Miguel Barrera, Jaime Oviedo López, J. Alejandro Heredia Guerrero, Santiago Domínguez Meister, Daniel Aguilera Puerto, Francisco Javier Navas Martos, José Manuel de la Torre Ramírez


The main objective of this project is to evaluate the feasibility of scaling up a procedure to obtain fatty polyhydroxyalcanoate (PHA) bioplastics from a low-cost and abundant source like peels residues of commercial fruits. The strength of the proposal relies on the introduction of a new non-toxic and fully biodegradable polymeric material as a substitute for environmental-hostile petroleum-based plastics. The overall sustainability is extended to the use of a low-impact synthetic route and to the processing of a plant residue rather than crops intended for human or cattle feeding. The project is considered of additional interest in regions with an agricultural based economy like Andalusia and with an important environmental impact arising from the greenhouse activity. The proposal also covers the study of new and more specific applications of such bio-based fatty polyhydroxyalcanoates.

Immobilization of cations in high-density charge confined spaces: management of harmful cations wastes

Research head: María Dolores Alba Carranza
Period: 01-01-2011 / 31-12-2013
Financial source: Ministerio de Ciencia e Innovación
Code: CTQ2010-14874/BQU
Research group: Miguel Angel Castro Arroyo, Maria del Mar Orta Cuevas, Mery Carolina Pazos Zarama, Said ElMrabet, Esperanza Pavón González, Maria Villa Alfageme, Santiago Medina Carrasco, Ana Isabel Becerro Nieto, Alberto José Fernández Carrión


The central subject of this Project deals with the environmental technological exigency for development of advanced technologies for the elimination of polluting agents. The interest and the effort dedicated to the development of new technologies that allow more effective treatments of retention and new procedures of valorisation is increasing in numerous R&D plans in the last years. It is in this scene where the present proposal must be fitted and circumscribed into two experimental basic findings: designing expansible high layer charge silicates with a controlled distribution of active centres, which can be effective materials for the retention of hazardous and radioactive wastes, and obtaining insoluble disilicate phases in smooth conditions, appropriate for the immobilization of such species. This objective represents a qualitative change in the work that has been developed up to now in relation to the elimination of radioactive and toxic wastes as well as in the application of the methodology to silicate systems. The objectives are adapted, in general, to the high-priority lines of Basic Investigation of Chemistry, in the area of Inorganic Chemistry (Solid State Chemistry) and Environmental Chemistry in particular but, in spite of its basic character, the Project is adapted to diverse lines of investigation of Oriented Chemistry and it is supported by different EPOs (ENRESA, BEFESA and ALQUIMIA). These objectives, of eminent basic character, require the development of techniques of sophisticated analysis like advanced Solid State NMR, X-ray diffraction, under conditions of controlled pressure and temperature or gamma spectroscopy of low counts. This fact fits to the particular objective of the Chemistry Area of “using the instrumental and experimental technology for the study of materials” and with objective O2.5 (Enhance the availability of interdisciplinary infrastructures and sharing use of them) of the R+D+I National Plan 2008-2011. A guarantee of this proposal is that, in a first place, the Research Group (RG) has recently published the synthesis of expansible mica using a method that allows obtaining the desired layer charge in the material; secondly, the RG has a wide experience in the design of synthesis mechanisms of silicates as demonstrated by the number of papers published on this area during the last decade, and, finally, the RG has developed useful methodologies for the present Project in collaboration with other Groups with which it maintains a narrow scientific relationship.

Bioener: Aplicación de tecnologías biomiméticas a sistemas energéticos

Research head: Julián Martínez Fernández
Period: 01-01-2010 / 31-12-2012
Financial source: Junta de Andalucía
Code: P09-TEP-5152 (Proyecto de Excelencia)
Research group: Manuel Jiménez Melendo, Antonio De Arellano-López, Alfonso Bravo León, F.M. Varela Feria


Technological advances have made possible to diversify and optimize energy produc-tion, which in turn has motivated the development of new ways to store energy. In particular, as production methods diversify, it is necessary to develop new materials for energy storage, both large scale and in consumer devices and transportation. This is especially important in the context of higher penetration of renewable energies, which often depend on climatological conditions and require ways to store excess energy at production peaks, so it can be used when production decreases. In parallel to this strategy and to reduce the share of fossil fuels in the overall energy production, it is necessary to increase the efficiency of conventional power generation sys-tems, for example by increasing material’s life and operating temperatures, for example in gas turbine systems, among others. The development of materials for high temperature applications, especially ceramics, has been traditionally linked to the search for increased efficiency of power generation systems. Ceramic materials, due to their high melting point, good creep resistance and resistance to corrosion, are seen as candidates for application in chemically aggressive environments at temperatures over 1000 ºC. Carbides and nitrides in particular are being studied extensively for this kind of applications. Porous ceramics are also of great interest in energy applications, such as heat exchangers or syngas filtration systems, among others. Among active research lines in the development of new materials for energy storage, electrochemical storage is expected to have the largest impact in the end consumer, as the design of high capacity batteries and electrochemical capacitors is key for the viability of tech-nologies such as plug-in electric cars. For this reason, research into new materials for electro-chemical storage has become a strong focal point among the scientific community and consti-tutes one to the great technological challenges of today. Biomorphic silicon carbide (bioSiC) is a ceramic material obtained by reactive infiltra-tion of carbon performs derived by pyrolysis of natural precursors. The precursor, usually wood, is rough-machined and then converted to carbon by pyrolysis in a controlled atmos-phere at high temperatures. The result is a macroporous carbon material (bioC) with a micro-structure that closely resembles that of the original precursor. This carbon template is then machined to near net shape and is melt reacted with silicon either in liquid or vapor phase to obtain a SiC composite with some residual Si that shows excellent thermomechanical proper-ties and a microstructure that closely mimics that of the original wood precursor. Tailoring the material’s properties is possible by adequate selection of the precursor, which determines the microstructure and thus the properties of the bioSiC. It is also possible to remove the remaining silicon through chemical etching to obtain a macroporous SiC material which can then be reinfiltrated to create novel composites and cermets, such as bioSiC/Al or bioSiC/Cu. The prospect of producing macroporous carbon materials with controlled nanoporosi-ty is interesting for electrochemical applications, as it would be possible to infiltrate or coat macropores with a second phase the provides additional function, for instance in three dimensional lithium batteries [3, 20] or carbon/oxide supercapacitors [4, 5]. In this way, the development of new carbon materials with controlled structure and porosity could open the door to novel architectures and designs for devices able to store larger amounts of energy. Most nanoporous carbon materials used nowadays are obtained through activation of carbons made from pyrolysis of synthetic precursors [21], although in the last years carbide-derived carbons have been the subject of great interest [22, 23, 24]. It is possible to obtain high-purity nanoporous carbon through high temperature chlorination of metallic carbides, which rank among the best carbon materials for electrochemical applications. In this direction, is has already been shown that carbides obtained from natural precursors, such as bioSiC are viable precursors to carbide-derived carbons [25]. This proposal’s aim is two-fold: on one side, the bioC processing will be studied in de-tail, paying special attention to precursor selection and to the possibility of introducing differ-ent atmospheres during the pyrolysis process, such as CO2 or water vapor, that promote nanoporosity in the material. The effect of processing parameter in the degree of crystallinity, nanoporosity, crystallite size and structure of the resulting carbon material will be assessed. The possibility of promoting carbon graphitization through the use of different catalysis in the pyrolysis process will be studied. The resulting carbon’s microstructure and physical properties will be studied and correlated to the processing parameters. On the other side, the effect of the aforementioned treatments on the bioSiC material will be studied, and the possibility of obtaining novel cermets in-situ, such as bioSiC/Al, bioSiC/Ti, through melt infiltration, will be assessed. In a last step, the possibility of obtained carbon materials with enhanced structure from the ceramic carbides will be explored.

Microestructura y deformación plástica a alta temperatura de óxidos eutécticos basados en Al2O3. Superplasticidad

Research head: Manuel Jiménez Melendo
Period: 01-01-2010 / 31-12-2012
Financial source: Ministerio de Ciencia y Tecnología
Code: MAT2009-13979-C03-01
Research group: Julián Martínez Fernández, Antonio Ramírez De Arellano-López, Alfonso Bravo León, Caroline Clauss Klamp, F.M. Varela Feria, C. Vaquero Aguilar


This research addresses to produce binary and ternary oxide eutectics –specifically, Al2O3/ZrO2, Al2O3/Y3Al5O12(YAG), Al2O3/ZrO2/YAG and Al2O3/SiO2/ZrO2, zirconia being stabilized with different amounts of Y2O3– with well-controlled microstructures in the micro- to nanometric range for structural and thermal applications in efficient-enhanced power generation and conversion systems: fuel cells, chemical and high-temperature gas cooled reactors, thermal barriers of steels and super alloys in gas turbines and diesel engine components, etc. These materials are very attractive because of their excellent properties: high melting point, low density, thermal conductivity and chemical reactivity, and superior mechanical performance at both low and high temperature: mechanical strength close to 5 GPa at room temperature, and high creep, wear and erosion resistance. Very recently, superplasticity has been discovered in nanosized materials by the applicant team. Oxide eutectics will be produced by laser-assisted processing techniques in three configurations: bulk, plates (on ceramic and metallic substrates) and multilaminates. For the later configuration, microarquitectures with optimized residual stresses will be designed for enhanced mechanical and thermal performance. The residual stresses will be investigated by using piezo- and Raman spectroscopy, and the data compared to numerical predictions. Laser techniques will be also used to modify the microstructure of conventional ceramic coatings deposited on metallic engine components by Air Plasma Spray, and for machining of ceramic components to obtain a given functional geometry or to modify the external surfaces for improved wear behavior. One of the main goals of this Project is to produce materials with nanosized phases in order to achieve superplasticity (which contrasts with the superior creep resistance of mi-crosized materials). This capability opens the possibility of using superplastic joining and forming as processing methods for complex pieces with near net shape, recovering back its characteristic resistance after thermal treatments. The mechanical properties (flexural and compression resistance, elastic modulus, hardness, toughness and wear) will be evaluated from room temperature up to 1950 K in air as well as under other different environmental atmospheres in order to investigate their effect in the mechanical behavior or material degradation. A significant part of the Project is the structural and microstructural characterization of the as-received materials, and their evolution during mechanical tests. Such an investigation is critical to establish relationships between the experimental mechanical behavior (necessary for engineering designs) and the microstructural and processing parameters. To this end, techniques of optical (particularly confocal), electron (image, microanalysis and diffraction) and atomic force microscopy, and X-ray diffraction with texture facilities will be used. Mechanical and microstructural data will feedback the fabrication process in order to obtain materials with tailored properties for specific applications.

Ceramic composites and low-dimensional phases to waste management

Research head: Miguel Angel Castro Arroyo
Period: 01-10-2007 / 30-09-2010
Financial source: Ministerio de Educación y Ciencia
Code: CTQ2007-63297
Research group: Alba, M.D., Alvero, R., Becerro, A.I., Chain, P., Escudero, A., Naranjo, M., Trillo, J.M.


The main objective of this Project is obtaining composite materials from especially designed expansible and high layer charge laminar silicates containing low dimensional phases with effective activity for the retention and immobilization of toxic and dangerous wastes. The main innovating aspect of the Project arises, on one hand, from the confluence of the studies that the research team has performed with researchers from University of Cambridge (United Kingdom) within the development of the current national project. On the other hand, it arises from the action of reunification of the researchers who participate in a unique multidisciplinary project in the border of the basic chemistry of silicates in connection with the waste management. The proposed hypothesis, elaborated from the results obtained by the research team during the last decade, states that the effectiveness of the elimination of polluting agents by layered aluminosilicates is controlled by the structural disposition and the composition of the low dimensional phases originated during the treatments. Methodology is not limited to synthesis of the composite materials and its characterization, and it incorporates a measurement of the potential which they would represent in the treatment of wastes, essentially based on some organic polluting agents and heavy, toxic and radioactive cations. The development of the Project will affect the relations of the research team with Research Groups of the University of Bayreuth (Germany) and Cambridge (United Kingdom) and the multidisciplinary character of the Project and the noticeable academic and educational character of the team can be considered a guarantee of its high formative capacity.

Inmobilization of toxic and radioactive wastes by silicates

Research head: Miguel Angel Castro Arroyo
Period: 28-2-2007 / 1-3- 2010
Financial source: Junta de Andalucía
Code: P06-FQM-02179
Research group: Alba, M.D., Alvero, R., Becerro, A.I., Chain, P., Escudero, A., Naranjo, M., Pavón, E., Trillo, J.


In The present Project tries to use high-charged silicates, which are designed under procedures that allow controling the quantity and distribution of the tetrahedral active centers. They will be submitted to a set of chemical soft treatments in order to inmobilize toxic elements. This project will be carried out in collaboration with BEFESA and ENRESA companies. Firstly, the effect that the experimental variables involved in the procedure of synthesis exert on the distribution of the active centers of the materials will be analyzed. In the second stage, the synthetic silicates will be treated under soft hydrothermal conditions with solutions containing carefully selected toxic and radioactive elements. Finally, the degree of retention of these elements in the new obtained phases will be estimated. The Research Team (R.T.) will incorporate an experimental methodology developed by itself that includes the combined employment of Nuclear Magnetic Resonance of Solids, X-ray Diffraction, X-rays Fluorescence and Microfluorescence, which will give information of the long range order and the local environment of the active centers of the residues, responsible of it dangerousness. It will have to give direct and not yet available information of the final mechanism of fixation, which is the main objective of this Project. The expected Results will bring basic useful information about the mechanisms of interaction of metallic ions with the framework of expansible aluminosilicates and its relation with the local arrangement of their atoms. Moreover, it will bring a useful knowledge allowing to develop new suitable procedures for immobilization of industrial waste, in collaboration with the companies of the sector, which marks the innovative character of the Project.

New Bio-ceramization processes applied to vegetable hierarchical structures

Research head: Julián Martínez Fernández
Period: 01-10-2006 / 30-09-2010
Financial source: Unión Europea
Code: STRP 033277 TEM-PLANT
Research group: Ramírez de Arellano-López, A., Jiménez, M., Marrero, M., Clauss, M., Bravo, A., Quispe, J.J.


TEM-PLANT project focuses on the development and application of breakthrough processes to transform plant-derived hierarchical structures into templates for the exploitation of innovative biomedical devices with smart anisotropic performances and advanced biomechanical characteristics, designed for bone and ligament substitution.  The TEM-PLANT project primary addresses the nano-biotechnologies area and will push the current boundaries of the state-of-the-art in production of hierarchical structured biomaterials. By combining biology, chemistry, materials science, nanotechnology and production technologies, new and complex plant transformation processes will be investigated to copy smart hierarchical structures existing in nature and to develop breakthrough biomaterials that could open the door to a whole new generation of biomedical applications for which no effective solution exists to date.

Starting from suitably selected vegetal raw material, ceramization processes based on pyrolysis will be applied to produce carbon templates, which will be either infiltrated by silicon to produce inert SiC ceramic structures or exchanged by electrophoresis deposition to produce bioresorbable ceramics. For ligament yielding two processes will be developed: pH-controlled and electrophoresis-controlled fibration to generate fibrous collagenous cords with high tensile strength and wear-resistance.