Scientific Papers in SCI
2024
2024
Química de Superficies y Catálisis
Nickel-based cerium zirconate inorganic complex structures for CO2 valorisation via dry reforming of methane
Martín-Espejo, Juan Luis; Merkouri, Loukia-Pantzechroula; Gándara-Loe, Jesús; Odriozola, José AntonioJournal of Environmental Sciences, 140 (2024) 12-23
The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.
June, 2024 | DOI: 10.1016/j.jes.2023.01.022
Química de Superficies y Catálisis
Enhanced low-temperature CO2 methanation over La-promoted NiMgAl LDH derived catalyst: Fine-tuning La loading for an optimal performance
Wang, ZL; Zhang, TY; Reina, TR; Huang, L; Xie, WF; Musyoka, NM; Oboirien, B; Wang, QFuel, 366 (2024) 131383
LDH-derived Ni-based catalysts are gathering momentum due to their excellent thermal stability but their lowtemperature CO2 methanation is limited. In this study, various concentrations of La were introduced into the LDH-derived Ni-based catalysts for CO2 methanation, and the underlying mechanisms were investigated. The optimal Ni/La-0.2-MgAlOx catalyst presented a CO(2)conversion level of 69.0 % at 225 C-degrees, which is over 7 times higher than that of conventional Ni/MgAlOx. The addition of small amounts of La could significantly enhance H spillover to promote the reduction of Ni species, but the oxygen vacancy concentration became the dominant factor causing changes in low -temperature activity as the La contents continue to increase. CO2 was found to be adsorbed at the oxygen vacancies in the form of bidentate carbonates, which are more reactive under an enhanced electron -rich environment. The research offers guidance to design effective and sustainable catalysts for low -temperature CO2 methanation.
June, 2024 | DOI: 10.1016/j.fuel.2024.131383
Química de Superficies y Catálisis
Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation: An economic approach
Judith González-Arias, Guillermo Torres-Sempere, Miriam González-Castaño, Francisco M. Baena-Moreno, Tomás R. ReinaJournal of Environmental Sciences, 140 (2024) 69-78
Herein we study the economic performance of hydrochar and synthetic natural gas co-production from olive tree pruning. The process entails a combination of hydrothermal carbonization and methanation. In a previous work, we evidenced that standalone hydrochar production via HTC results unprofitable. Hence, we propose a step forward on the process design by implementing a methanation, adding value to the gas effluent in an attempt to boost the overall process techno-economic aspects. Three different plant capacities were analyzed (312.5, 625 and 1250 kg/hr). The baseline scenarios showed that, under the current circumstances, our circular economy strategy in unprofitable. An analysis of the revenues shows that hydrochar selling price have a high impact on NPV and subsidies for renewable coal production could help to boost the profitability of the process. On the contrary, the analysis for natural gas prices reveals that prices 8 times higher than the current ones in Spain must be achieved to reach profitability. This seems unlikely even under the presence of a strong subsidy scheme. The costs analysis suggests that a remarkable electricity cost reduction or electricity consumption of the HTC stage could be a potential strategy to reach profitability scenarios. Furthermore, significant reduction of green hydrogen production costs is deemed instrumental to improve the economic performance of the process. These results show the formidable techno-economic challenge that our society faces in the path towards circular economy societies.
June, 2024 | DOI: 10.1016/j.jes.2023.04.019
Reactividad de Sólidos
Ca-based materials derived from calcined cigarette butts for CO2 capture and thermochemical energy storage
Amghar, N; Moreno, V; Sánchez-Jiménez, PE; Perejón, A; Pérez-Maqueda, LAJournal of Environmental Sciences, 140 (2024) 230-241
Cigarette butts (CBs) are one of the most common types of litter in the world. Due to the toxic substances they contain, the waste generated poses a harmful risk to the environment, and therefore there is an urgent need for alternative solutions to landfill storage. Thus, this work presents a possible revalorization of this waste material, which implies interesting environmental benefits. CBs were used as sacrificial templates for the preparation of CaO-based materials by impregnation with calcium and magnesium nitrates followed by flaming combustion. These materials presented enhanced porosity for their use in the Calcium Looping process applied either to thermochemical energy storage or CO2 capture applications. The influence of the concentration of Ca and Mg in the impregnating solutions on the multicycle reactivity of the samples was studied. An improved multicycle performance was obtained in terms of conversion for both applications.
June, 2024 | DOI: 10.1016/j.jes.2023.07.028
Química de Superficies y Catálisis
Monitoring the influence of steam on highly-active rhodium catalyst during the combined reforming of biogas by transient and steady-state operando spectroscopic studies
Garcilaso, V; Blay-Roger, R; González-Castaño, M; Bobadilla, LF; Centeno, MA; Odriozola, JACatalysis Science & Technology, 14 (2024) 3514-3523
The impact derived from incorporating water into CH4/CO2 biogas stream for the generation of syngas was investigated over the Rh/MgAl2O4 catalyst using operando steady-state and transient DRIFT spectroscopy coupled with MS. The incorporation of steam resulted in improved CH4 conversion rates and attained syngas streams with higher H-2/CO ratios. It was demonstrated that in the presence of steam, the generation of CHxO species through the reaction of CO* with active *OH species is favored at the metal support surface. Besides, the enhanced resistance delivered by water molecules towards deactivating the coking phenomena was associated with easier carbonaceous decomposition and the exposition of the very active Rh (100) surfaces for methane decomposition. The Rh/MgAl2O4 catalyst was demonstrated to be an effective catalyst for the production of H-2-rich syngas streams. More importantly, the insights reported herein provide new evidences regarding the impact of steam on biogas reforming reactions.
June, 2024 | DOI: 10.1039/d4cy00236a
Nanotecnología en Superficies y Plasma
Synergistic Integration of Nanogenerators and Solar Cells: Advanced Hybrid Structures and Applications
Hajra, S; Ali, A; Panda, S; Song, HW; Rajaitha, PM; Dubal, D; Borras, A; In-Na, P; Vittayakorn, N; Vivekananthan, V; Kim, HJ; Divya, S; Oh, THAdvanced Energy Materials, (2024) 2400025
The rapid growth of global energy consumption and the increasing demand for sustainable and renewable energy sources have urged vast research into harnessing energy from various sources. Among them, the most promising approaches are nanogenerators (NGs) and solar cells (SCs), which independently offer innovative solutions for energy harvesting. This review paper presents a comprehensive analysis of the integration of NGs and SCs, exploring advanced hybrid structures and their diverse applications. First, an overview of the principles and working mechanisms of NGs and SCs is provided for seamless hybrid integrations. Then, various design strategies are discussed, such as piezoelectric and triboelectric NGs with different types of SCs. Finally, a wide range of applications are explored that benefit from the synergistic integration of NGs and SCs, including self-powered electronics, wearable devices, environmental monitoring, and wireless sensor networks. The potential for these hybrid systems is highlighted to address real-world energy needs and contribute to developing sustainable and self-sufficient technologies. In conclusion, this review provides valuable insights into the state-of-the-art developments in NGs and SCs integration, shedding light on advanced hybrid structures and their diverse applications.
June, 2024 | DOI: 10.1002/aenm.202400025
Reactividad de Sólidos
In situ study on enhanced plastic deformability of Lanthanum-doped Bismuth ferrite processed by flash sintering
Yang, B; Sánchez-Jiménez, PE; Niu, TJ; Sun, TY; Shang, ZX; Cho, J; Perejón, A; Shen, C; Pérez-Maqueda, LA; Tsakalakos, T; Wang, HY; Zhang, XHJournal of the European Ceramic Society, 44 (2024) 3985-3994
BiFeO3 is a promising multiferroic material for versatile device applications due to its co-existence of magnetic (i.e., antiferromagnetic) and ferroelectric ordering at room temperature. While its functional properties have been extensively investigated, the exploration of its mechanical behavior was limited mostly to the thin-film form of BiFeO3. In this work, we conducted in situ micropillar compression experiments to investigate the deformation behavior of La-doped BiFeO3 (La-BFO) samples processed by both conventional and flash sintering methods. The conventionally sintered La-BFO exhibited limited deformability at room temperature and 450 degrees C. In contrast, the deformability of the flash-sintered La-BFO specimens was substantially improved by nearly 100% at both testing temperatures. Detailed post-mortem studies suggest that preexisting dislocations and wide anti-phase boundaries introduced during flash sintering can toughen flash-sintered La-BFO by easing dislocation migration and ferroelastic domain switching. This study provides a fresh perspective to design an advanced multifunctional system with improved mechanical properties.
June, 2024 | DOI: 10.1016/j.jeurceramsoc.2023.12.099
Química de Superficies y Catálisis
A novel membrane-based process to concentrate nutrients from sidestreams of an Urban Wastewater Treatment Plant through captured carbon dioxide from biogas
González-Arias, J; Baena-Moreno, FM; Rodríguez-Galán, M; Navarrete, B; Vilches-Arenas, LFScience of the Total Environment, 931 (2024) 172884
Among the challenges that wastewater treatment plants face in the path towards sustainability, reducing CO 2 emissions and decrease the amount of waste highlight. Within these wastes, those that can cause eutrophication, such as nutrients (nitrogen and phosphorous) are of great concern. Herein we study a novel process to concentrate nutrients via membrane technology. In particular, we propose the use of forward osmosis, applying the carbonated solvent which contains the CO 2 captured from the biogas stream as draw solution. This carbonated solvent has a high potential osmotic pressure, which can be used in forward osmosis to concentrate the nutrients stream. To this end, we present the results of an experimental plan specifically designed and performed to evaluate two main parameters: (1) nutrients concentration; and (2) water recovery. The process designed involves pH adjustment, membrane filtration to separate solids, pH reduction and forward osmosis concentration of nutrients. With this process, concentrations factor for nutrients in between 2 and 2.5 and water recovery of approximately 50 % with water flux of 7 to 8 L/(m 2 h) can be achieved.
June, 2024 | DOI: 10.1016/j.scitotenv.2024.172884
Materiales de Diseño para la Energía y Medioambiente
Transparent, plasticized cellulose-glycerol bioplastics for food packaging applications
Benítez, JJ; Florido-Moreno, P; Porras-Vazquez, JM; Tedeschi, G; Athanassiou, A; Heredia-Guerrero, JA; Guzman-Puyol, SInternational Journal of Biological Macromolecules, 273 (2024) 132956
Free-standing films have been obtained by drop-casting cellulose-glycerol mixtures (up to 50 wt% glycerol) dissolved in trifluoroacetic acid and trifluoroacetic anhydride (TFA:TFAA, 2:1, v:v). A comprehensive examination of the optical, structural, mechanical, thermal, hydrodynamic, barrier, migration, greaseproof, and biodegradation characteristics of the films was conducted. The resulting cellulose-glycerol blends exhibited an amorphous molecular structure and a reinforced H-bond network, as evidenced by X-ray diffraction analysis and infrared spectroscopy, respectively. The inclusion of glycerol exerted a plasticizing influence on the mechanical properties of the films, while keeping their transparency. Hydrodynamic and barrier properties were assessed through water uptake and water vapor/oxygen transmission rates, respectively, and obtained values were consistent with those of other cellulose-based materials. Furthermore, overall migration levels were below European regulation limits, as stated by using Tenax as a dry food simulant. In addition, these bioplastics demonstrated good greaseproof performance, particularly at high glycerol content, and potential as packaging materials for bakery products. Biodegradability assessments were carried out by measuring the biological oxygen demand in seawater and high biodegradation rates induced by glycerol were observed.
June, 2024 | DOI: 10.1016/j.ijbiomac.2024.132956
Reactividad de Sólidos
Al2O3/Y3Al5O12 (YAG)/ZrO2 composites by single-step powder synthesis and spark plasma sintering
Vakhshouri, M; Najafzadehkhoee, A; Talimian, A; López-Pernia, C; Poyato, R; Gallardo-López, A; Gutiérrez-Mora, F; Prnova, A; Galusek, DJournal of the European Ceramic Societ (2024)
Alumina-yttrium aluminum garnet (YAG)-zirconia composites are often produced by the melt solidification method. In the present study, we investigated the fabrication of α-Al2O3/Y3Al5O12 (YAG)/ZrO2 composite by Spark Plasma Sintering (SPS) of powders synthesized by Pechini’s sol-gel method. The ternary composites with homogenous microstructure and high density were produced by SPS at 1300 °C for 15 min. The addition of ZrO2 promoted the sintering of composites, resulting in a higher density and, in turn, higher hardness. A change in the indentation fracture behavior as the result of ZrO2 addition was observed.
May, 2024 | DOI: 10.1016/j.jeurceramsoc.2024.05.004
- ‹ previous
- 6 of 214
- next ›