Scientific Papers in SCI
2021
2021
Reactividad de Sólidos
EGFR-targeting antitumor therapy: Neuregulins or antibodies?
de Lavera, I; Merkling, PJ; Oliva, JM; Sayagues, MJ; Cotan, D; Sanchez-Alcazar, JA; Infante, JJ; Zaderenko, A.P.European Journal of Pharmaceutical Sciences, 158 (2021) 105678
Malignancies such as lung, breast and pancreatic carcinomas are associated with increased expression of the epidermal growth factor receptor, EGFR, and its role in the pathogenesis and progression of tumors has made this receptor a prime target in the development of antitumor therapies. In therapies targeting EGFR, the development of resistance owing to mutations and single nucleotide polymorphisms, and the expression of the receptor ligands themselves are very serious issues. In this work, both the ligand neuregulin and a bispecific antibody fragment to EGFR are conjugated separately or together to the same drug-delivery system to find the most promising candidate. Camptothecin is used as a model chemotherapeutic drug and superparamagnetic iron oxide nanoparticles as a delivery system. Results show that the lowest LD50 is achieved by formulations conjugated to both the antibody and the ligand, demonstrating a synergy. Additionally, the ligand location in the nucleus favors the antitumor activity of Camptothecin. The high loading capacity and efficiency convert these systems into a good alternative for administering Camptothecin, a drug whose use is otherwise severely limited by its chemical instability and poor solubility. Our choice of targeting agents allows treating tumors that express ErbB2 (Her2+ tumors) as well as Her2- tumors expressing EGFR.
March, 2021 | DOI: 10.1016/j.ejps.2020.105678
Propiedades mecánicas, modelización y caracterización de cerámicos avanzados
Cation-driven electrical conductivity in Ta-doped orthorhombic zirconia ceramics
Moshtaghioun, BM; Laguna-Bercero, MA; Pena, JI; Gomez-Garcia, D; Dominguez-Rodriguez, ACeramics International, 47 (2021) 7248-7522
This paper is devoted to the study of the electrical conductivity of tantalum-doped zirconia ceramics prepared by spark plasma sintering. In this study, the temperature dependence of conductivity in as-prepared specimens and in those previously annealed in air is determined and compared. A semi-empirical model, which is based on the oxidation states of the cations, has been developed and successfully assessed. According to this, the conductivity is basically controlled by the diffusion of tetravalent zirconium cations in both cases, although the concentration of these species varies drastically with the amount of induced oxygen vacancies. This is a quite unexpected fact, since conductivity is normally controlled by anionic diffusion in zirconia ceramics. This option is forbidden here due to the presence of substitutional pentavalent cations. Therefore, conductivity values are much lower than those reported in trivalent or divalent substitutional cation doped zirconia ceramics.
March, 2021 | DOI: 10.1016/j.ceramint.2020.10.227
Materiales para Bioingeniería y Regeneración Tisular
Nanofibrous Gelatin-Based Biomaterial with Improved Biomimicry Using D-Periodic Self-Assembled Atelocollagen
Borrego-Gonzalez, S; Dalby, MJ; Diaz-Cuenca, ABiomimetics, 6 (2001) 20
Design of bioinspired materials that mimic the extracellular matrix (ECM) at the nanoscale is a challenge in tissue engineering. While nanofibrillar gelatin materials mimic chemical composition and nano-architecture of natural ECM collagen components, it lacks the characteristic D-staggered array (D-periodicity) of 67 nm, which is an important cue in terms of cell recognition and adhesion properties. In this study, a nanofibrous gelatin matrix with improved biomimicry is achieved using a formulation including a minimal content of D-periodic self-assembled atelocollagen. We suggest a processing route approach consisting of the thermally induced phase separation of the gelatin based biopolymeric mixture precursor followed by chemical-free material cross-linking. The matrix nanostructure is characterized using field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The cell culture assays indicate that incorporation of 2.6 wt.% content of D-periodic atelocollagen to the gelatin material, produces a significant increase of MC3T3-E1 mouse preosteoblast cells attachment and human mesenchymal stem cells (hMSCs) proliferation, in comparison with related bare gelatin matrices. The presented results demonstrate the achievement of an efficient route to produce a cost-effective, compositionally defined and low immunogenic “collagen-like” instructive biomaterial, based on gelatin.
March, 2021 | DOI: 10.3390/biomimetics6010020
Química de Superficies y Catálisis
Synergizing carbon capture and utilization in a biogas upgrading plant based on calcium chloride: Scaling-up and profitability analysis
Baena-Moreno, FM; Reina, TR; Rodriguez-Galan, M; Navarrete, B; Vilches, LFScience of The Total Environment, 758 (2021) 143645
Herein we analyze the profitability of a novel regenerative process to synergize biogas upgrading and carbon dioxide utilization. Our proposal is a promising alternative which allows to obtain calcium carbonate as added value product while going beyond traditional biogas upgrading methods with high thermal energy consumption. Recently we have demonstrated the experimental viability of this route. In this work, both the scale-up and the profitability of the process are presented. Furthermore, we analyze three representative scenarios to undertake a techno-economic study of the proposed circular economy process. The scale-up results demonstrate the technical viability of our proposal. The precipitation efficiency and the product quality are still remarkable with the increase of the reactor size. The techno-economic analysis reveals that the implementation of this circular economy strategy is unprofitable without subsidies. Nonetheless, the results are somehow encouraging as the subsides needed to reach profitability are lower than in other biogas upgrading and carbon dioxide utilization proposals. Indeed, for the best-case scenario, a feed-in tariff incentive of 4.3 (sic)/MWh makes the approach profitable. A sensitivity study through tornado analysis is also presented, revealing the importance of reducing bipolar membrane electrodialysis energy consumption. Overall our study envisages the big challenge that the EU faces during the forthcoming years. The evolution towards bio-based and circular economies requires the availability of economic resources and progress on engineering technologies.
March, 2021 | DOI: 10.1016/j.scitotenv.2020.143645
Materiales Avanzados
Mining Wastes of an Albite Deposit as Raw Materials for Vitrified Mullite Ceramics
Sanchez-Soto, PJ; Garzon, E; Perez-Villarejo, L; Angelopoulos, GN; Eliche-Quesada, DMinerals, 11 (2021) 232
In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermodilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65-40 wt. %), accompanied by quartz (25-40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44-3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from similar to 8 to 32 wt. %. The particle size analysis indicated values of 11-31 wt. % of particles <63 mu m. The ceramic properties of fired samples (1000-1350 degrees C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200-1250 degrees C. At 1200 ffiC, the bulk density reached a maximum value of 2.38 g/cm(3). An abrupt change in the phase evolution by XRD was found from 1150 to 1200 degrees C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.
March, 2021 | DOI: 10.3390/min11030232
Fotocatálisis Heterogénea: Aplicaciones
Facile synthesis and characterization of a novel 1,2,4,5-benzene tetracarboxylic acid doped polyaniline@zinc phosphate nanocomposite for highly efficient removal of hazardous hexavalent chromium ions from water
Abdelghani Hsini, Yassine Naciri, Mohamed Benafqir, Zeeshan Ajmal, Nouh Aarab, Mohamed Laabd, J.A. Navío, F. Puga, Rabah Boukherroub, Bahcine Bakiz, Abdallah AlbourineJournal of Colloid and Interface Science, 585 (2021) 560-573
The present study describes the preparation of a novel 1,2,4,5-benzene tetracarboxylic acid doped polyaniline@zinc phosphate (BTCA-PANI@ZnP) nanocomposite via a facile two-step procedure. Thereafter, the as-prepared composite material adsorption characteristics for Cr(VI) ions removal were evaluated under batch adsorption. Kinetic approach studies for Cr(VI) removal, clearly demonstrated that the results of the adsorption process followed the pseudo second order and Langmuir models. The thermodynamic study indicated a spontaneous and endothermic process. Furthermore, higher monolayer adsorption was determined to be 933.88 mg g1 . In addition, the capability study regarding Cr(VI) ions adsorption over BTCA-PANI@ZnP nanocomposite clearly revealed that our method is suitable for large scale application. X-ray photoelectron spectroscopy (XPS) analysis confirmed Cr(VI) adsorption on the BTCA-PANI@ZnP surface, followed by its subsequent reduction to Cr(III). Thus, the occurrence of external mass transfer, electrostatic attraction and reduction phenomenon were considered as main mechanistic pathways of Cr(VI) ions removal. The superior adsorption performance of the material, the multidimensional characteristics of the surface and the involvement of multiple removal mechanisms clearly demonstrated the potential applicability of the BTCA-PANI@ZnP material as an effective alternative for the removal of Cr(VI) ions from wastewater.
March, 2021 | DOI: 10.1016/j.jcis.2020.10.036
Materiales Ópticos Multifuncionales
Impact of Tb4+ and morphology on the thermal evolution of Tb-doped TiO2 nanostructured hollow spheres and nanoparticles
Colomer, MT; Rodriguez, E; Moran-Pedroso, M; Vattier, F; de Andres, AJournal of Alloys and Compounds, 853 (2021) 156973
Tb-doped TiO2 hollow spheres (HSs) in the range 0.0-2.0 at.% have been synthesized by the first time to the best of our knowledge. The HSs are compared with nanoparticles (NPs) to evaluate the impact of morphology on their physicochemical and photoluminescence (PL) behavior upon increasing calcination temperature. After calcination at 550 degrees C, the particles are anatase with a primary average size of 10.0 +/- 0.2 nm for the NPs and 12.0 +/- 0.2 nm for those that form the micron sized hollow spheres of 1.8 +/- 0.2 mu m diameter and ca. 64 nm shell thickness. The temperature of the anataseerutile transition is found to be strongly dependent on the presence of Tb as well as on morphology. Contrarily to the usual stabilization of anatase when doping with trivalent rare-earth ions, the transition temperature is reduced when doping with Tb. The rutile phase is further favored for the HSs compared to the NPs probably related to the low density of the HSs and/or a more efficient packing density and/or a bigger crystal size of the nanoparticles that form those spheres with respect to the packing and the size of the NPs and/or the crystal size of the nanoparticles of the HSs with respect to the size of the NPs. Only a slight unit-cell volume increase for the anatase structure is observed upon Tb doping, in both the NPs and in the HSs, contrary to the expected increment due to the larger ionic radius of Tb3+ compared to Ti4+. In addition, the intensity of the characteristic f-f Tb3+ emission bands is extremely weak both in the anatase and rutile phases. The transition is accompanied with the emergence of an infrared emission band centered at 810 nm related to the formation of defects during the structural transformation providing deep levels in the gap that partly quench the f-f emissions in the rutile phase. The results are consistent with the presence of Tb in both +3 and +4 valence states. XPS measurements confirmed the presence of Tb3+ as well as of Tb4+ in both HSs and NPs. The large fraction of Tb4+ present in the samples originates the weak f-f emission intensity, an only slight increase of the cell parameters and the destabilization of the anatase phase.
February, 2021 | DOI: 10.1016/j.jallcom.2020.156973
Tribología y Protección de Superficies
Long-term low friction maintenance and wear reduction on the ventral scales in snakes
Sanchez-Lopez, JC; Schaber, CF; Gorb, SNMaterials Letters, 285 (2021) 129011
Snake skins evolved to withstand permanent friction and wear during sliding. Here, the microstructure of ventral scales of the snake Lampropeltis getula californiae was analyzed using scanning electron microscopy, and the long-term dynamic friction behavior was investigated by reciprocating sliding friction tests. A smooth epoxy resin with similar elasticity modulus and hardness was used for comparison purposes. Strong differences in frictional and wear mechanisms between the two materials were revealed in spite of similar mechanical properties. Snake skin showed a considerably lower frictional coefficient that kept stable over several thousands of sliding cycles. A reduction of the stick-slip behavior was also denoted by analyzing the variation of the friction coefficient in the forward and reverse motion influencing the wear mechanism. This frictional behavior can be explained by three different but complementary mechanisms: fibrous layered composite material of the skin with a gradient of material properties, surface microstructure, and the presence of ordered layers of lipid molecules at the skin surface.
February, 2021 | DOI: 10.1016/j.matlet.2020.129011
Fotocatálisis Heterogénea: Aplicaciones
Enhanced UV and visible light photocatalytic properties of synthesized AgBr/SnO2 composites
Puga, F.; Navío, J.A.; Hidalgo, M.C.Separation and Purification Tecnology, 257 (2021) 117948
Composites (AgBr/SnO2) comprised of AgBr and SnO2 with different molar % of bare SnO2, have been synthesized by simple precipitation methods; the bare SnO2 used, was synthesized by hydrothermal procedure. Samples have been characterized by X-ray diffraction (XRD), N2-adsorption, UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of the as-prepared photocatalysts was evaluated through photocatalytic degradation of rhodamine B (RhB) and caffeic acid (CAFA) under UV and Visible illumination. In photocatalytic degradation studies, for both substrates, conversion rates of around 95% were found in 45 min of both UV-illumination and 85% under visible lighting. These conversion rates were superior than the conversion rates of pure parental components, AgBr and SnO2 under the same experimental conditions. At least, for RhB no loss of photocatalytic activity has been observed after five recycles although the mineralization degree progressively diminished along the recycles. The enhanced photocatalytic degradation of AgBr/SnO2 compounds was attributed, in part, to a synergistic increase in adsorption viability, as well as to the effective separation of photoinduced load carriers that resulted from the formation of a heterojunction according to the type II junction. Radical scavengers’ experiments indicated that active oxidant species as O2.−, ·OH and h+ all are involved in this photocatalytic system, although it seems that O2.− played the major role in the photocatalytic degrading of RhB by AgBr/SnO2 composites. In summary, coupling AgBr with SnO2 remarkably improves the photocatalytic activity under both UV and visible-illumination with respect to the parental components. These features open the route to future applications of this material in the field of environmental remediation.
February, 2021 | DOI: 10.1016/j.seppur.2020.117948
Tribología y Protección de Superficies
Insights into the role of the layer architecture of Cr-Ti-N based coatings in long-term high temperature oxidation experiments in steam atmosphere
Mato, S; Sanchez-Lopez, JC; Barriga, J; Perez, FJ; Alcala, GCeramics International, 47 (2021) 4257-4266
Knowledge on hard coatings has been applied in the energy field extending their use as protecting coatings of steam power generation plants components. The role of the layer architecture of Cr-Ti-N based coatings deposited by reactive cathodic arc evaporation on P92 steel substrates was studied with the focus on their oxidation resistance at 650 degrees C in 100% steam atmosphere up to 2000 h. Characterization of the coatings was performed by gravimetry, scanning electron microscopy, electron probe microanalysis, glow discharge optical emission spectroscopy, X-ray diffraction, thermodynamic simulations using the CALPHAD method, Rockwell C indentation and nanoindentation. The layered arrangement improves the oxidation resistance of TiN under the working conditions of steam power plants, as well as the mechanical properties of CrN. The produced architectures performance under the described working conditions boosts the understanding of the processes taking place at high temperature, making possible the design of optimal coatings combining the best behavior of both nitrides for each specific application, reaching a corrosion protection at high temperature in water vapor comparable to that of CrN and a hardness and Young's modulus as high as those of TiN.
February, 2021 | DOI: 10.1016/j.ceramint.2020.10.003
- ‹ previous
- 51 of 214
- next ›