Scientific Papers in SCI
2020
2020
Nanotecnología en Superficies y Plasma
Optofluidic liquid sensing on electromicrofluidic devices
Oliva-Ramirez, M; Wang, SL; Rico-Gavira, V; Lopez-Santos, C; Fan, SK; Gonzalez-Elipe, ARMaterials Research Express, 7 (2020) 036407
Electromicrofluidic (EMF) devices are used to handle and move tiny amounts of liquids by electrical actuation, including electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP). Monitoring the liquid characteristics in one of these devices requires suitable sensing transducers incorporated within the microfluidic structure. In the present work, we describe the incorporation of an optofluidic photonic transducer in an EMF device to monitor the refractive index of a liquid during its manipulation. The incorporated transducer consists of a responsive porous Bragg Microcavity (BM) deposited via physical vapor oblique angle deposition. Besides reporting the manufacturing procedure of the sensing-EMF device combining liquid handling and monitoring, the performance of the BM is verified by infiltrating several liquids dripped on its surface and comparing the responses with those of liquid droplets electrically moved from the delivery part of the chip to the BM location. This study proved that modified EMF devices can incorporate photonic structures to analyze very low liquid volumes (similar to 0.2 mu L) during its handling.
March, 2020 | DOI: 10.1088/2053-1591/ab7fdf
Fotocatálisis Heterogénea: Aplicaciones
Preparation of ZnFe2O4/ZnO composite: Effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination
Zouhier, M.; Tanji, K.; Navio, J.A.; Hidalgo, M.C.; Jaramillo-Páez, C.; Kherbeche, A.Journal of Photochemistry and Photobiology A: Chemistry, 390 (2020) 112305
An ZnFe2O4/ZnO composite catalyst was prepared by solution combustion method. In this study, one nominal molar percentage of iron was used in the synthesis, corresponding to 20 % molar relative to ZnO. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray Fluorescence (XRF), Scanning Electronic Microscopy (SEM), Transmission Electronic Microscopy (TEM) and Ultraviolet-visible (UV–vis) diffuse spectroscopy (DRS). The photocatalytic activities of the catalysts were investigated based on the degradation of two dyes, methylene blue (MB) and remazol brilliant blue (RBB), in aqueous solution under both UV and visible light illumination respectively. It was found that the composite had a good photocatalytic activity at basic pH by using 1 g/L of catalyst under UV illumination for both MB and RBB. Under visible illumination, while pristine ZnO showed no activity, the composite exhibited an excellent visible efficiency, reaching up to an 80 % conversion of the initial dye concentrations in 2 h. The enhancement of the visible photocatalytic activity of Fe/ZnO sample with respect to pristine ZnO is attributed to the formation of ZnFe2O4 coupled with ZnO, having a narrow band gap value that contributes to the absorption of visible photons with an improved separation path for the photo-generated carriers.
March, 2020 | DOI: 10.1016/j.jphotochem.2019.112305
Nanotecnología en Superficies y Plasma
Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers
Garcia-Valenzuela, A; Butterling, M; Liedke, MO; Hirschmann, E; Trinh, TT; Attallah, AG; Wagner, A; Alvarez, R; Gil-Rostra, J; Rico, V; Palmero, A; Gonzalez-Elipe, ARMicroporous and Mesoporous Materials, 295 (2020) 109968
The nano-porosity embedded into the tilted and separated nanocolumns characteristic of the microstructure of evaporated thin films at oblique angles has been critically assessed by various variants of the positron annihilation spectroscopy. This technique represents a powerful tool for the analysis of porosity, defects and internal interfaces of materials, and has been applied to different as-deposited SiO2 and TiO2 thin films as well as SiO2/TiO2 multilayers prepared by electron beam evaporation at 70 and 85 zenithal angles. It is shown that, under same deposition conditions, the concentration of internal nano-pores in SiO2 is higher than in TiO2 nanocolumns, while the situation is closer to this latter in TiO2/SiO2 multilayers. These features have been compared with the predictions of a Monte Carlo simulation of the film growth and explained by considering the influence of the chemical composition on the growth mechanism and, ultimately, on the structure of the films.
March, 2020 | DOI: 10.1016/j.micromeso.2019.109968
Materiales Ópticos Multifuncionales
Optical Responses of Localized and Extended Modes in a Mesoporous Layer on Plasmonic Array to Isopropanol Vapor
Murai, S; Cabello-Olmo, E; Kamakura, R; Calvo, ME; Lozano, G; Atsumi, T; Miguez, H; Tanaka, KJournal of Physical Chemistry C, 124 (2020) 5772-5779
Mesoporous silica features open and accessible pores that can intake substances from the outside. The combination of mesoporous silica with plasmonic nanostructures represents an interesting platform for an optical sensor based on the dependence of plasmonic modes on the refractive index of the medium in which metallic nanoparticles are embedded. However, so far only a limited number of plasmonic nanostructures are combined with mesoporous silica, including random dispersion of metallic nanoparticles and flat metallic thin films. In this study, we make a mesoporous silica layer on an aluminum nanocylinder array. Such plasmonic arrangements support both localized surface plasmon resonances (LSPRs) and extended modes which are the result of the hybridization of LSPRs and photonic modes extending into the mesoporous layer. We investigate in situ optical reflectance of this system under controlled pressure of isopropanol vapor. Upon exposure, the capillary condensation in the mesopores results in a gradual spectral shift of the reflectance. Our analysis demonstrates that such shifts depend largely on the nature of the modes; that is, the extended modes show larger shifts compared to localized ones. Our materials represent a useful platform for the field of environmental sensing.
March, 2020 | DOI: 10.1021/acs.jpcc.9b10999
Materiales de Diseño para la Energía y Medioambiente
Binder-free supercapacitor electrodes: Optimization of monolithic graphitized carbons by reflux acid treatment
Gomez-Martin, A; Gutierrez-Pardo, A; Martinez-Fernandez, J; Ramirez-Rico, JFuel Processing Technology, 199 (2020) 106279
The rational design of electrodes mimicking the cellular structure of natural bio-resources has been a matter of increasing interest for applications in energy storage. Due to their anisotropic and hierarchical porosity, monolithic carbon materials from natural wood precursors are appealing as electrodes for supercapacitor applications due to their interconnected channels, relatively low cost and environmentally friendly synthesis process. In this work, a liquid-phase oxidative treatment with refluxing nitric acid at 100 degrees C for 8 h was performed to enhance the surface properties of beech-derived graphitized carbons treated with an iron catalyst. Microstructural, textural and surface investigations revealed that this strategy was successful in removing amorphous carbon and in functionalizing their surfaces. The crystallinity, accessible surface area, micropore volume and surface functionality of beech-derived carbons were increased upon the reflux treatment. The resulting porous carbon materials were evaluated as binderless monolithic electrodes for supercapacitors applications in aqueous KOH electrolyte. A maximum specific capacitance of 179 F.g(-1) and a volumetric capacitance of 89 Fcm(-3) in galvanostatic charge/discharge experiments were reached. Monolithic electrodes exhibited good cycling stability, with a capacitance retention over 95% after 10,000 cycles.
March, 2020 | DOI: 10.1016/j.fuproc.2019.106279
Materiales Ópticos Multifuncionales
Optical interference effects on the Casimir-Lifshitz force in multilayer structures
Esteso, V; Carretero-Palacios, S; Miguez, HPhysical Review A, 101 (2020) 033815
The Casimir-Lifshitz force F(C-L) between planar objects when one of them is stratified at the nanoscale is herein investigated. Layering results in optical interference effects that give rise to a modification of the optical losses, which, as stated by the fluctuation-dissipation theorem, should affect the Casimir-Lifshitz interaction. On these grounds, we demonstrate that, by nanostructuring the same volume of dielectric materials in diverse multilayer configurations, it is possible to access F(C-L) of attractive or repulsive nature, even getting canceled, at specific separation distances.
March, 2020 | DOI: 10.1103/PhysRevA.101.033815
Química de Superficies y Catálisis
Potentialization of bentonite properties as support in acid catalysts
Amaya, J; Bobadilla, L; Azancot, L; Centeno, M; Moreno, S; Molina, RMaterials Research Bulletin, 123 (2020) 110728
Enhancement of the main physicochemical properties of a natural bentonite was carried out by means of modifications using surfactant, reflux, microwave treatment and, subsequently, the incorporation of AlZr and AlCe species. The evolution of the main changes in each modification stage was evaluated by means of X-ray diffraction, N-2 sortometry, scanning microscopy (SEM), NH3-TPD, NH3-DRIFTS and CO adsorption at low temperature. For the evaluation of the catalytic behavior, the dehydration-dehydrogenation reactions of 2-propanol and hydro-conversion of decane were used; both of which generate, in addition, information regarding the acidic properties of the materials. The correlation of the number, type and acid strength with the catalytic behavior, allowed establishing the effect produced by both the delamination method and the nature of the incorporated cation. This generated tools that allow controlling the physicochemical properties, and more specifically, the enhancement of the acidity of new supports based on this type of natural clay mineral.
March, 2020 | DOI: 10.1016/j.materresbull.2019.110728
Reactividad de Sólidos
Influence of the Test Configuration and Temperature on the Mechanical Behaviour of WC-Co
Gonzalez, LM; Chicardi, E; Gotor, FJ; Bermejo, R; Llanes, L; Torres, YMetals, 10 (2020) 322
In this work, the effect of the test configuration and temperature on the mechanical behaviour of cemented carbides (WC-Co) with different carbide grain sizes (d(WC)) and cobalt volume fractions (V-Co), implying different binder mean free paths (lambda (Co)), was studied. The mechanical strength was measured at 600 degrees C with bar-shaped specimens subjected to uniaxial four-point bending (4PB) tests and with disc specimens subjected to biaxial ball-on-three-balls (B3B) tests. The results were analysed within the frame of the Weibull theory and compared with strength measurements performed at room temperature under the same loading conditions. A mechanical degradation greater than 30% was observed when the samples were tested at 600 degrees C due to oxidation phenomena, but higher Weibull moduli were obtained as a result of narrower defect size distributions. A fractographic analysis was conducted with broken specimens from each test configuration. The number of fragments (N-f) and the macroscopic fracture surface were related to the flexural strength and fracture toughness of WC-Co. For a given number of fragments, higher mechanical strength values were always obtained for WC-Co grades with higher K-Ic. The observed differences were discussed based on a linear elastic fracture mechanics (LEFM) model, taking into account the effect of the temperature and microstructure of the cemented carbides on the mechanical strength.
March, 2020 | DOI: 10.3390/met10030322
Fotocatálisis Heterogénea: Aplicaciones
Pt–TiO2–Nb2O5 heterojunction as effective photocatalyst for the degradation of diclofenac and ketoprofen
Sacco, O.l; Murcia, J.J.; Lara, A.E.; Hernández-Laverde, M.; Rojas, H.; Navío, J.A.; Hidalgo, M.C.; Vaiano, V.Materials Science in Semiconductor Processing, 107 (2020) 104839
Pt–TiO2–Nb2O5 heterojunction was synthetized and studied for the photocatalytic removal of diclofenac (DCF) and ketoprofen (KTF) under UV light irradiation. The physical-chemical properties of the prepared catalysts were analysed by different characterization techniques revealing that the lowest platinum nanoparticle size and the better metal distribution was observed in Pt–TiO2–Nb2O5 sample. The Pt–TiO2–Nb2O5 heterojunction possessed the best photocatalytic activity toward both the photodegradation and mineralization of the two selected pollutants. The optimal photocatalyst showed a DCF and KTF mineralization rate of 0.0555 and 0.0746 min−1, respectively, which were higher than those of Pt–TiO2 (0.0321 min−1 for DCF and 0.0597 min−1 for KTF). The experiments driven to analyse the effects of free radical capture showed that ·OH, ·O2− and h+ have a primary role in reactive during the photocatalytic reaction. The improved photocatalytic performances of the Pt–TiO2–Nb2O5 heterojunction could be argue by a direct Z-scheme mechanism in which the Pt0 nanoparticles could act as a bridge between TiO2 and Nb2O5, improving the electron-hole separation and, ultimately, enhancing the photocatalytic removal rate of both DCF and KTF.
March, 2020 | DOI: 10.1016/j.mssp.2019.104839
Reactividad de Sólidos
Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage
Duran-Martin, JD; Jimenez, PES; Valverde, JM; Perejon, A; Arcenegui-Troya, J; Trinanes, PG; Maqueda, LAPJournal of Advanced Research, 22 (2020) 67-76
The calcium looping process, based on the reversible reaction between CaCO3 and CaO, is recently attracting a great deal of interest as a promising thermochemical energy storage system to be integrated in Concentrated Solar Power plants (CaL-CSP). The main drawbacks of the system are the incomplete conversion of CaO and its sintering-induced deactivation. In this work, the influence of particle size in these deactivation mechanisms has been assessed by performing experimental multicycle tests using standard limestone particles of well-defined and narrow particle size distributions. The results indicate that CaO multicycle conversion benefits from the use of small particles mainly when the calcination is carried out in helium at low temperature. Yet, the enhancement is only significant for particles below 15 μm. On the other hand, the strong sintering induced by calcining in CO2 at high temperatures makes particle size much less relevant for the multicycle performance. Finally, SEM imaging reveals that the mechanism responsible for the loss of activity is mainly pore-plugging when calcination is performed in helium, whereas extensive loss of surface area due to sintering is responsible for the deactivation when calcination is carried out in CO2 at high temperature.
March, 2020 | DOI: 10.1016/j.jare.2019.10.008
- ‹ previous
- 61 of 214
- next ›