Menú secundario

Scientific Papers in SCI



2019


Nanotecnología en Superficies y Plasma

Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor

Naseri, M; Moradi, M; Hajati, S; Espinos, JP; Kiani, MA
Journal of Materials Science-Materials in Electronics, 30 (2019) 4499-4510

In this study, electrochemical energy storage performances of an efficient Ni-Fe sulfide and hydroxide supported on porous nickel foam are compared. X-ray diffraction (XRD), X-rayphotoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometer (EDS) results confirmed the formation of Ni-Fe-S and Ni-Fe-OH electrodes. In addition, Brunauer-Emmett Teller (BET) was used to determine the specific surface area of the prepared materials. Moreover, the morphologies were observed by scanning electron microscopy (SEM). The brilliant characteristics of Ni-Fe-S could be attributed to transport acceleration in electrolyte ions and electrons, occurrence of redox reactions as well as the higher conductivity of the sample. From stand point of comparison, the capacitance of Ni-Fe-S is more than that of Ni-Fe-OH. Therefore, the exchange of O2- with S2- in Ni-Fe-OH lattice obviously improves the electrochemical performance. The as-fabricated Ni-Fe sulfide electrode exhibits a tremendous specific capacitance of 884.9Fg(-1) at 1A g(-1). Furthermore, an assembled asymmetric supercapacitor device using the activated carbon as negative electrode and this smart configuration (Ni-Fe-S) as positive electrode also provided a maximum specific power and specific energy of 8000Wkg(-1), 37.9 Whkg(-1), respectively. Also, it shows cycling stability with 88.8% capacitance retention after 1700 cycles in aqueous electrolyte, demonstrating its potential application in the next-generation high-performance supercapacitors used for energy storage.


March, 2019 | DOI: 10.1007/s10854-019-00738-x

Nanotecnología en Superficies y Plasma

XPS primary excitation spectra of Zn 2p, Fe 2p, and Ce 3d from ZnO, α‐Fe2O3, and CeO2

Pauly, N.; Yubero, F.; Espinós, J.P.; Tougaard, S.
Surface and Interface Analysis, 51 (2019) 353-360

Metal oxides are important for current development in nanotechnology. X‐ray photoelectron spectroscopy(XPS) is a widely used technique to study the oxidation states of metals, and a basic understanding of the photoexcitation process is important to obtain the full information from XPS. We have studied core level excitations of Zn 2p, Fe 2p, and Ce 3d photoelectron emissions from ZnO, α‐Fe2O3, and CeO2. Using an effective energy‐differential XPS inelastic‐scattering cross section evaluated within the semiclassical dielectric response model for XPS, we analysed the experimental spectra to determine the corresponding primary excitation spectra, ie, the initial excitation processes. We find that simple emission (Zn 2p) as well as complex multiplet photoemission spectra (Fe 2p and Ce 3d) can be quantitatively analysed with our procedure. Moreover, for α‐Fe2O3, it is possible to use the software package CTM4XAS (Charge Transfer Multiplet program for X‐ray Absorption Spectroscopy) to calculate its primary excitation spectrum within a quantum mechanical model, and it was found to be in good agreement with the spectrum determined by analysis of the experiment.


March, 2019 | DOI: 10.1002/sia.6587

Materiales de Diseño para la Energía y Medioambiente

Sustainable polycondensation of multifunctional fatty acids from tomato pomace agro-waste catalyzed by tin (II) 2-ethylhexanoate

J.A. Heredia-Guerrero, G. Caputo, S. Guzmán-Puyol, G. Tedeschi, A. Heredia, L. Ceseracciu, J.J. Benítez, A. Athanassiou
Materials Today Sustainability, 3-4 (2019) 100004

Bioplastics were prepared from the fatty fraction (i.e., unsaturated and polyhydroxylated fatty acids) of tomato pomace agro-wastes. Aliphatic polyesters were synthesized at different temperatures (125, 150, and 175 °C), reaction times (0.25, 0.5, 0.75, 1, 3, 5, and 7 h), and amounts of tin (II) 2-ethylhexanoate (0, 0.02, 0.05, and 0.10 mmol) used as a catalyst. The rate constants and activation energies were calculated from infrared spectra. The right combination of reaction temperature and amount of catalyst improved the reaction kinetics (apparent k from ∼1 to ∼8.5 h−1), whereas the activation energy was reduced from ∼39 without catalyst to ∼28 kJ/mol when tin (II) 2-ethylhexanoate was present. Glass transitions between ca. −25 and ∼0 °C were measured by differential scanning calorimetry, strictly depending on the degree of polymerization. The amorphous character of the samples was confirmed by X-ray diffraction. Young's modulus and hardness were calculated from indentation tests and were typical of soft materials, although increased as the polycondensation reaction progressed. High water-contact angles (maximum value ∼109°) and low water uptakes (minimum value ∼2.1%) were determined. Physical properties were compared with those of common man-made plastics and polymers, finding that these tomato pomace bioplastics could be their realistic alternatives.


March, 2019 | DOI: 10.1016/j.mtsust.2018.12.001

Reactividad de Sólidos - Tribología y Protección de Superficies

Microstructure, interfaces and properties of 3YTZP ceramic composites with 10 and 20 vol% different graphene-based nanostructures as fillers

Munoz-Ferreiro, C; Morales-Rodriguez, A; Rojas, TC; Jimenez-Pique, E; Lopez-Pernia, C; Poyato, R; Gallardo-Lopez, A
Journal of Alloys and Compounds, 777 (2019) 213-224

The graphene family comprises not only single layer graphene but also graphene-based nanomaterials (GBN), with remarkably different number of layers, lateral dimension and price. In this work, two of these GBN, namely graphene nanoplatelets (GNP) with n similar to 15-30 layers and few-layer graphene (FLG) with n < 3 layers have been evaluated as fillers in 3 mol% yttria stabilized tetragonal zirconia (3YTZP) ceramic composites. Composites with 10 and 20 vol% GNP or FLG have been fabricated by wet powder processing and spark plasma sintering (SPS) and the influence of the content and number of layers of the graphene-based filler has been assessed. For both graphene-based fillers, an intermediate zirconia oxycarbide has been detected in the grain boundaries. The lower stacking degree and much more homogeneous distribution of the FLG, revealed by transmission electron microscopy (TEM), can improve load transfer between the GBNs and the ceramic matrix. However, high FLG contents lower densification of the composites, due partly to the larger FLG interplanar spacing also estimated by TEM. The hardness (both Vickers and nanoindentation) and the elastic modulus decrease with increased GBN content and with improved graphene dispersion. The FLG greatly inhibit the crack propagation that occur perpendicular to their preferential orientation plane. The composites with thinner FLG have higher electrical conductivity than those with GNP. The highest electrical conductivity is achieved by composites with 20 vol% FLG in the direction perpendicular to the compression axis during sintering, sigma(perpendicular to) = 3400 +/- 500 Sm-1. 


March, 2019 | DOI: 10.1016/j.jallcom.2018.10.336

Degradation processes of historic metal threads used in some Spanish and Portuguese ornamentation pieces

Duran, A; Perez-Maqueda, R; Perez-Rodriguez, JL
Journal of Cultural Heritage, 36 (2019) 135-142

The degradation processes that occurred on metal threads applied in the embroidery used for clothing and in the ornamentation of sculptures, the Sevillian Holy Week processions, and Portuguese and Spanish palace and museum are thoroughly analyzed. Some threads from the 14th and 18–19th centuries were considered. In the metal threads, sulphur- and chlorine-based compounds were detected either individually or together, depending on the degradation process. Basic silver carbonate, sodium bicarbonate and copper-based compounds were also observed. The different degradation processes were attributed to different factors, such as environmental contamination, degradation of the fibrous cores, and inadequate cleaning and/or mechanical treatments.


March, 2019 | DOI: 10.1016/j.culher.2018.09.006

Fotocatálisis Heterogénea: Aplicaciones

Synthesis of sol-gel pyrophyllite/TiO2 heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity

El Gaidoumi, A.; Doña Rodríguez, J.M.; Pulido Melián, E.; González-Díaz, O.M.; Navío Santos, J.M.; El Bali, B.; Kherbeche, A.
Surfaces and Interfaces, 14 (2019) 19-25

We successfully synthesized an efficient photoactive pyrophyllite/TiO2 heterostructures using a sol-gel route at ambient temperature. The samples were prepared by exfoliation of a pyrophyllite layered-type clay by TiO2. The prepared samples exhibited strong photocatalytic activity for the degradation of phenol. The heterostructure PTi750 (SBET = 16.58 m2/g) calcined at 750 °C, in which the mixed phases of anatase and rutile exist (52.2% anatase/10.7% rutile), showed the highest photocatalytic activity against commercial TiO2Aeroxide P25. The methanol washed PTi750 was 5 times faster than the corresponding unwashed sample; phenol was totally degraded with a TOC reduction of 89.2%. The materials have been characterized by: X-ray diffraction (XRD), Diffuse reflectance UV–vis spectrophotometry (UV–Vis DRS), scanning electron microscopy (SEM) and BET specific surface area.


March, 2019 | DOI: 10.1016/j.surfin.2018.10.003

Reactividad de Sólidos

Sample-Controlled analysis under high pressure for accelerated process studies

Perejon, A; Sanchez-Jimenez, PE; Soria-Hoyo, C; Valverde, JM; Criado, JM; Perez-Maqueda, LA
Journal of the American Ceramic Society, 102 (2019) 1338-1346

The potential of controlled rate thermal analysis (CRTA) for studying high-pressure gas-solid processes has been evaluated. CRTA is a type of smart temperature program based on a feedback system that uses any experimental signal related to the process evolution for commanding the temperature evolution. In this work, an instrument that uses the gravimetric signal for CRTA control has been designed and used for the study of two high-pressure gas-solid reactions: the highly exothermic thermal oxidation of TiC under high pressure of oxygen and the reduction in Fe2O3 under high pressure of hydrogen. Advantages of CRTA for discriminating overlapping processes and appraising kinetic reaction mechanisms are shown.


March, 2019 | DOI: 10.1111/jace.15960

Materiales Ópticos Multifuncionales

Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission

Geng, DL; Cabello-Olmo, E; Lozano, G; Miguez, H
ACS Photonics, 6 (2019) 634-641

Rare-earth-based phosphors are the materials on which current solid-state lighting technology is built. However, their large crystal size impedes the tuning, optimization, or manipulation of emitted light that can be achieved by their integration in nanophotonic architectures. Herein we demonstrate a hybrid plasmonic-photonic architecture capable of both channeling in a specific direction and enhancing by eight times the emission radiated by a macroscopically wide layer of nanophosphors. In order to do so, a slab of rare-earth-based nanocrystals is inserted between a dielectric multilayer and a metal film, following a rational design that optimizes the coupling of nanophosphor emission to collective modes sustained by the metal-dielectric system. Our approach is advantageous for the optimization of solid-state lighting systems.


March, 2019 | DOI: 10.1021/acsphotonics.8b01407

Reactividad de Sólidos

Anisotropic lattice expansion determined during flash sintering of BiFeO3 by in-situ energy-dispersive X-ray diffraction

Wassel, MAB; Perez-Maqueda, LA; Gil-Gonzalez, E; Charalambous, H; Perejon, A; Jha, SK; Okasinski, J; Tsakalakos, T
Scripta Materialia, 162 (2019) 286-291

BiFeO3 has a Curie temperature (T-c) of 825 degrees C, making it difficult to sinter using conventional methods while maintaining the purity of the material, as unavoidably secondary phases appear at temperatures above T-c Flash sintering is a relatively new technique that saves time and energy compared to other sintering methods. BiFeO3 was flash sintered at 500 degrees C to achieve 90% densification. In-situ energy dispersive X-ray diffraction (EDXRD) revealed that the material did not undergo any phase transformation, having been sintered well below the Tc. Interestingly, anisotropic lattice expansion in the material was observed when the sample was exposed to the electric field. 


March, 2019 | DOI: 10.1016/j.scriptamat.2018.11.028

Materiales Nanoestructurados y Microestructura

Test of a He-3 target for transfer reactions in inverse kinematics

Carozzi, G; Valiente-Dobon, JJ; Gadea, A; Siciliano, M; Mengoni, D; Fernandez, A; Godinho, V; Hufschmidt, D; Di Nitto, A
Nuovo cimento c-colloquia and communications in physics, 42 (2019) 94

With the aim of studying exotic nuclei close to the proton dripline, an innovative He-3 target was produced and tested in a collaboration between the Materials Science Institute of Seville (Spain) and the Legnaro National Laboratories (Italy). The target was manufactured with a new technique that aims to reduce the costs while providing high quality targets. The target was tested at the Legnaro National Laboratories. The results of this test are presented in this contribution.


March, 2019 | DOI: 10.1393/ncc/i2019-19094-9

 

 

 

 

 

icms