Scientific Papers in SCI
2024
2024
Materiales Ópticos Multifuncionales
Role of Inter-Particle Connectivity in the Photo-Carrier Cooling Dynamics in Perovskite Quantum Dot Solids
Tiede, DO; Koch, KA; Romero-Pérez, C; Ucer, KB; Calvo, ME; Galisteo-López, JF; Míguez, H; Kandada, ARSAdvanced Optical Materials, (2024) 2401483
Intraband carrier relaxation in quantum dots (QDs) has been a subject of extensive spectroscopic investigation for several decades, and have been used to optimize the efficiency of opto-electronic processes. In the past few years, metal halide perovskites-based QDs have been shown to exhibit slow hot-carrier cooling characteristics that are desirable for photo-energy harvesting technologies. While several mechanisms are proposed to rationalize the retardation of the cooling dynamics, including hot-phonon bottleneck and polaronic effects, the role of inter-particle connectivity in these dynamics is largely ignored. Here, an in-depth study of photo-excitation dynamics and carrier cooling on perovskite QD solids with varying degrees of inter-dot coupling is presented. It is observed that inter-particle connectivity has deterministic effects on the many-body interactions that are relevant for carrier cooling. These include carrier-carrier interactions that result in Auger-reheating of the carriers, and lattice characteristics that subsequently affect the phonon-assisted cooling dynamics. This spectroscopic study of ultrafast carrier dynamics in perovskite QD solids establishes inter-dot separation as a critical material design parameter for the optimization of photo-generated carrier temperature, which fundamentally determines the luminescence characteristics and thus the opto-electronic quality of the material.
The photo-excitation dynamics and carrier cooling in metal halide perovskite quantum dot solids are investigated here. Evidence for the deterministic role of inter-particle connectivity on the many-body interactions relevant to carrier cooling is discussed. These include carrier-carrier interactions that result in Auger-reheating of the carriers, and lattice coupling that subsequently affects the phonon-assisted cooling dynamics. image
September, 2024 | DOI: 10.1002/adom.202401483
Nanotecnología en Superficies y Plasma
Tailoring of Self-Healable Polydimethylsiloxane Films for Mechanical Energy Harvesting
Ghosh, K; Morgan, A; García-Casas, X; Kar-Narayan, SACS Applied Energy Materials, 7 (2024) 8185-8195
Triboelectric nanogenerators (TENGs) have emerged as potential energy sources, as they are capable of harvesting energy from low-frequency mechanical actions such as biological movements, moving parts of machines, mild wind, rain droplets, and others. However, periodic mechanical motion can have a detrimental effect on the triboelectric materials that constitute a TENG device. This study introduces a self-healable triboelectric layer consisting of an Ecoflex-coated self-healable polydimethylsiloxane (SH-PDMS) polymer that can autonomously repair mechanical injury at room temperature and regain its functionality. Different compositions of bis(3-aminopropyl)-terminated PDMS and 1,3,5-triformylbenzene were used to synthesize SH-PDMS films to determine the optimum healing time. The SH-PDMS films contain reversible imine bonds that break when the material is damaged and are subsequently restored by an autonomous healing process. However, the inherent stickiness of the SH-PDMS surface itself renders the material unsuitable for application in TENGs despite its attractive self-healing capability. We show that spin-coating a thin layer (approximate to 32 mu m) of Ecoflex on top of the SH-PDMS eliminates the stickiness issue while retaining the functionality of a triboelectric material. TENGs based on Ecoflex/SH-PDMS and nylon 6 films show excellent output and fatigue performance. Even after incisions were introduced at several locations in the Ecoflex/SH-PDMS film, the TENG spontaneously attained its original output performance after a period of 24 h of healing. This study presents a viable approach to enhancing the longevity of TENGs to harvest energy from continuous mechanical actions, paving the way for durable, self-healable mechanical energy harvesters.
September, 2024 | DOI: 10.1021/acsaem.4c01275
Materiales de Diseño para la Energía y Medioambiente
Elucidating the Mechanism of Iron-Catalyzed Graphitization: The First Observation of Homogeneous Solid-State Catalysis
Hunter, RD; Takeguchi, M; Hashimoto, A; Ridings, KM; Hendy, SC; Zakharov, D; Warnken, N; Isaacs, J; Fernández-Muñoz, S; Ramirez-Rico, J; Schnepp, ZAdvanced Materials, 36 (2024) 2404170
Carbon is a critical material for existing and emerging energy applications and there is considerable global effort in generating sustainable carbons. A particularly promising area is iron-catalyzed graphitization, which is the conversion of organic matter to graphitic carbon nanostructures by an iron catalyst. In this paper, it is reported that iron-catalyzed graphitization occurs via a new type of mechanism that is called homogeneous solid-state catalysis. Dark field in situ transmission electron microscopy is used to demonstrate that crystalline iron nanoparticles “burrow” through amorphous carbon to generate multiwalled graphitic nanotubes. The process is remarkably fast, particularly given the solid phase of the catalyst, and in situ synchrotron X-ray diffraction is used to demonstrate that graphitization is complete within a few minutes.
September, 2024 | DOI: 10.1002/adma.202404170
Química de Superficies y Catálisis
Reactive Surface Explored by NAP-XPS: Why Ionic Conductors Are Promoters for Water Gas Shift Reaction
García-Moncada, N; Penkova, A; González-Castaño, M; Odriozola, JAACS Catalysis (2024).
Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) experiments have been carried out in N-2 and N-2-H2O atmospheres on a Pt-based catalyst physically mixed with an Eu-doped ZrO2 ionic conductor as a function of temperature under realistic conditions of the water gas shift (WGS) reaction. This work aims to demonstrate the significant effect of having active H2O on the ionic conductor surface at reaction temperatures to provide it to Pt metal sites. The ionic conductor, Eu-doped zirconia matrix, presents defects (oxygen vacancies, O-v) that allows upon H2O dissociation the formation of a hydrogen-bonded molecular water layer favoring diffusion through a Grotthuss mechanism below 300 degrees C. In the presence of H2O, the O-v are occupied by hydroxyl species as observed in the Eu 4d spectra, which differentiate two types of Eu oxidation states. The Eu3+-to-Eu2+ atomic ratio increases with the occupancy of the O-v by hydroxyls. Moreover, while the Pt-based catalyst alone is unable to create Pt-OH bonds, the physical mixture of the Pt-based catalyst and the ionic conductor allows the formation of Pt-OH bonds from room temperature up to 300 degrees C. These data demonstrate that the increase in molecular water concentration on the ionic conductor surface up to 300 degrees C acts as a reservoir to provide water to the Pt surface, enhancing the catalyst performance in the WGS reaction, supporting the importance of the surface H2O concentration in the reaction kinetics.
September, 2024 | DOI: 10.1021/acscatal.4c04287
Materiales y Procesos Catalíticos de Interés Ambiental y Energético
In situ XRD and operando XRD-XANES study of the regeneration of LaCo0.8Cu0.2O3 perovskite for preferential oxidation of CO
Pereñiguez, RP; Ferri, DMaterials Today Sustainability, 27 (2024) 100867
Combinations of perovskite-type oxides with transition and precious metals exhibit remarkable regenerating properties that can be exploited for catalytic applications. The objective of the present work was to study the structural changes experienced by LaCo0.8Cu0.2O3 under reducing/oxidizing atmosphere (redox) and Preferential Oxidation of CO (PrOx, with high H2 concentration) conditions and their reversibility. LaCo0.8Cu0.2O3 was prepared by ultrasonic spray combustion and was characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Structural changes were followed by operando XRD and XAS. Metallic Co and Cu were segregated under both sets of reducing conditions and re-dissolved into the perovskite upon oxidation at 500 °C. Simultaneously, the perovskite-type oxide disappeared under reducing conditions and formed again upon high-temperature oxidation. The effects of this reversible reduction/dissolution of B-site metals on catalyst structure and activity were studied concerning the catalytic process of PrOx. The active phases of cobalt and copper oxides suffer a reduction during the PrOx reaction due to the high H2 concentration; thus, the application of an intermediate oxidation treatment can regenerate the catalytic system and the perovskite can be used for several cycles of reaction and regeneration. In contrast, when this intermediate oxidation treatment is not applied, the catalytic performance decreases in successive activity cycles.
September, 2024 | DOI: 10.1016/j.mtsust.2024.100867
Fotocatálisis Heterogénea: Aplicaciones
A critical view about use of scavengers for reactive species in heterogeneous photocatalysis
Puga, F; Navío, JA; Hidalgo, MCApplied Catalysis A, General, 685 (2024) 119879
In heterogeneous photocatalysis, different reactive species generated from the excitation of the semiconductor are responsible for the degradation of different contaminants in aqueous solution. In order to evaluate the influence of each of these reactive species on the photocatalysis process, it is common to perform an analysis using different chemical compounds, which (in theory) react selectively with only one reactive species, preventing this species from participating in the process. Questioning this analysis is the aim of this work and the reasons that lead us to this will be described and discussed. For this, different investigations were selected where this analysis was carried out on two model substrates, Rhodamine B and Phenol. With this, it was possible to determine which compounds are most used as scavengers for the different reactive species, and how these compounds influence the photodegradation process. It was possible to shown that none of the commonly used scavengers react selectively with only one reactive species, since it can also influence other reactions, either by reacting with other reactive species, with the surface of the catalyst, or with the substrate under study, among others. In our opinion, the conclusions obtained by using scavenger analysis should be carefully considered, and the compounds used should be renamed as interfering species of the photocatalytic process.
September, 2024 | DOI: 10.1016/j.apcata.2024.119879
Materiales Coloidales
Sodium lanthanide tungstate-based nanoparticles as bimodal contrast agents for in vivo high-field MRI and CT imaging
Gómez-González, E; Caro, C; Núñez, NO; González-Mancebo, D; Urbano-Gámez, JD; García-Martín, ML; Ocaña, MJournal of Materials Chemistry B (2024).
Research on high-field magnetic resonance imaging (HF-MRI) has been increased in recent years, aiming to improve diagnosis accuracy by increasing the signal-to-noise ratio and hence image quality. Conventional contrast agents (CAs) have important limitations for HF-MRI, with the consequent need for the development of new CAs. Among them, the most promising alternatives are those based on Dy3+ or Ho3+ compounds. Notably, the high atomic number of lanthanide cations would bestow a high capability for X-ray attenuation to such Dy or Ho-based compounds, which would also allow them to be employed as CAs for X-ray computed tomography (CT). In this work, we have prepared uniform NaDy(WO4)(2) and NaHo(WO4)(2) nanoparticles (NPs), which were dispersible under conditions that mimic the physiological media and were nontoxic for cells, meeting the main requirements for their use in vivo. Both NPs exhibited satisfactory magnetic relaxivities at 9.4 T, thus making them a promising alternative to clinical CAs for HF-MRI. Furthermore, after their intravenous administration in tumor-bearing mice, both NPs exhibited significant accumulation inside the tumor at 24 h, attributable to passive targeting by the enhanced permeability and retention (EPR) effect. Therefore, our NPs are suitable for the detection of tumors through HF-MRI. Finally, NaDy(WO4)(2) NPs showed a superior X-ray attenuation capability than iohexol (commercial CT CA), which, along with their high r(2) value, makes them suitable as the dual-probe for both HF-MRI and CT imaging, as demonstrated by in vivo experiments conducted using healthy mice.
September, 2024 | DOI: 10.1039/d4tb01157k
Materiales Coloidales
Realization of Extreme Nonstoichiometry in Gadolinium Aluminate Garnets by Glass Crystallization Synthesis
Fang, X; Castaing, V; Becerro, AI; Cao, WW; Veron, E; Zanghi, D; Dyer, MS; Genevois, C; Allix, M; Pitcher, MJChemistry of Materials, 36 (2024) 8555-8563
The garnet aluminates RE3Al5O12 (RE = Gd - Lu, Y) are an important class of optical materials with a range of applications. Typically, they do not tolerate large deviations from ideal stoichiometry, and their luminescence properties are controlled by dopant selection rather than modification of the host structure. Here, we use glass crystallization as a nonequilibrium synthesis route to a new family of highly nonstoichiometric gadolinium aluminate garnets, of formula Gd3+xAl5-xO12 with x <= 0.60. Remarkably, this range is much broader than the previously reported Y3+xAl5-xO12 series (x <= 0.4), despite the vast size contrast between Al3+ and Gd3+, which are forced to share a crystallographic site in the nonstoichiometric materials: the endmember Gd3.6Al4.4O12 lies halfway between ideal garnet and perovskite stoichiometries, with 30% of its octahedral Al3+ sites substituted by Gd3+. In principle, this crystal chemistry should allow the synthesis of phosphor systems with rare-earth activators distributed over two different cation sublattices. To probe the response of luminescence properties to extreme nonstoichiometry in Gd3+xAl5-xO12, we synthesized three model phosphor systems by doping with Ce3+, Tb3+, or Tm3+/Yb3+ and found that upconversion (Tm3+/Yb3+) phosphors have the most potential to be tuned by this approach. These results demonstrate that highly nonstoichiometric garnet aluminates are not limited to small rare-earth hosts such as YAG, opening new opportunities for development of different garnet-based optical and magnetic materials.
August, 2024 | DOI: 10.1021/acs.chemmater.4c02266
Materiales Ópticos Multifuncionales
Transparent porous films with real refractive index close to unity for photonic applications
Miranda-Muñoz, JM; Viaña, JM; Calvo, ME; Lozano, G; Míguez, HMaterials Horizons (2024).
Herein, we demonstrate mechanically stable large-area thin films with a purely real refractive index (n) close to 1 in the optical range. At specific wavelengths, it can reach values as small as n = 1.02, the lowest reported for thin solid slabs. These are made of a random network of interwoven spherical silica shells, created by chemical vapour deposition of a thin layer of silica on the surface of randomly packed monodisperse polymer nanoparticles that form a film. Thermal processing of the composites results in highly porous silica-based transparent thin films. We demonstrate the potential of this approach by making novel photonic materials such as strong optical diffusers, built by integrating scattering centers within the ultralow n transparent films, or highly efficient light-emitting slabs, in which losses by total internal reflection are practically absent as a result of the almost null optical impedance at the film-air interface.
August, 2024 | DOI: 10.1039/d4mh00826j
Química de Superficies y Catálisis
FGD-Gypsum Waste to Capture CO2 and to Recycle in Building Materials: Optimal Reaction Yield and Preliminary Mechanical Properties
Moreno, V; González-Arias, J; Ruiz-Martinez, JD; Balart-Gimeno, R; Baena-Moreno, FM; Leiva, CMaterials, 17 (2024) 3774
The use of waste to capture CO2 has been on the rise, to reduce costs and to improve the environmental footprint. Here, a flue gas desulfurization (FGD) gypsum waste is proposed, which allows us to obtain a CaCO3-based solid, which should be recycled. The CO2 capture stage has primarily been carried out via the direct carbonation method or at high temperature. However, a high energy penalty and/or long reaction times make it unattractive from an industrial perspective. To avoid this, herein an indirect method is proposed, based on first capturing the CO2 with NaOH and later using an aqueous carbonation stage. This allows us to capture CO2 at a near-ambient temperature, improving reaction times and avoiding the energy penalty. The parameters studied were Ca2+/CO32− ratio, L/S ratio and temperature. Each of them has been optimized, with 1.25, 100 mL/g and 25 °C being the optimal values, respectively, reaching an efficiency of 72.52%. Furthermore, the utilization of the produced CaCO3 as a building material has been analyzed. The density, superficial hardness and the compressive strength of a material composed of 10 wt% of CaCO3 and 90 wt% of commercial gypsum, with a water/solid ratio of 0.5, is measured. When the waste is added, the density and the mechanical properties decreased, although the compressive strength and superficial hardness are higher than the requirements for gypsum panels. Thus, this work is promising for the carbonation of FGD-gypsum, which involves its chemical transformation into calcium carbonate through reacting it with the CO2 of flue gasses and recycling the generated wastes in construction materials
August, 2024 | DOI: 10.3390/ma17153774
- ‹ previous
- 3 of 214
- next ›