Menú secundario

Scientific Papers in SCI



2023


Reactividad de Sólidos

Low Temperature Magnetic Transition of BiFeO3 Ceramics Sintered by Electric Field-Assisted Methods: Flash and Spark Plasma Sintering

Manchon-Gordon, AF; Perejon, A; Gil-Gonzalez, E; Kowalczyk, M; Sanchez-Jimenez, PE; Perez-Maqueda, LA
Materials, 16 (2023) 189

Low temperature magnetic properties of BiFeO3 powders sintered by flash and spark plasma sintering were studied. An anomaly observed in the magnetic measurements at 250 K proves the clear existence of a phase transition. This transformation, which becomes less well-defined as the grain sizes are reduced to nanometer scale, was described with regard to a magneto-elastic coupling. Furthermore, the samples exhibited enhanced ferromagnetic properties as compared with those of a pellet prepared by the conventional solid-state technique, with both a higher coercivity field and remnant magnetization, reaching a maximum value of 1.17 kOe and 8.5 10(-3) emu/g, respectively, for the specimen sintered by flash sintering, which possesses the smallest grains. The specimens also show more significant exchange bias, from 22 to 177 Oe for the specimen prepared by the solid-state method and flash sintering technique, respectively. The observed increase in this parameter is explained in terms of a stronger exchange interaction between ferromagnetic and antiferromagnetic grains in the case of the pellet sintered by flash sintering.


January, 2023 | DOI: 10.3390/ma16010189

Nanotecnología en Superficies y Plasma

A Holistic Solution to Icing by Acoustic Waves: De-Icing, Active Anti-Icing, Sensing with Piezoelectric Crystals, and Synergy with Thin Film Passive Anti-Icing Solutions

Del Moral, J; Montes, L; Rico-Gavira, VJ; Lopez-Santos, C; Jacob, S; Oliva-Ramirez, M; Gil-Rostra, J; Fakhfouri, A; Pandey, S; Del Val, MG; Mora, J; García-Gallego, P; Ibanez-Ibanez, PF; Rodríguez Valverde, MA; Winkler, A; Borras, A; Gonzalez-Elipe, AR
Advanced Functional Materials, 33 (2023) 2209421

Icing has become a hot topic both in academia and in the industry given its implications in transport, wind turbines, photovoltaics, and telecommunications. Recently proposed de-icing solutions involving the propagation of acoustic waves (AWs) at suitable substrates may open the path for a sustainable alternative to standard de-icing or anti-icing procedures. Herein, the fundamental interactions are unraveled that contribute to the de-icing and/or hinder the icing on AW-activated substrates. The response toward icing of a reliable model system consisting of a piezoelectric plate activated by extended electrodes is characterized at a laboratory scale and in an icing wind tunnel under realistic conditions. Experiments show that surface modification with anti-icing functionalities provides a synergistic response when activated with AWs. A thoughtful analysis of the resonance frequency dependence on experimental variables such as temperature, ice formation, or wind velocity demonstrates the application of AW devices for real-time monitoring of icing processes.


January, 2023 | DOI: 10.1002/adfm.202209421 | Digital CSIC: http://hdl.handle.net/10261/354924

Reactividad de Sólidos

Nanocrystalline Skinnerite (Cu3SbS3) Prepared by High-Energy Milling in a Laboratory and an Industrial Mill and Its Optical and Optoelectrical Properties

Dutkova, E; Sayagues, MJ; Fabian, M; Balaz, M; Kovac, J; Kovac, J; Stahorsky, M; Achimovicova, M; Bujnakova, ZL
Molecules, 28 (2023) 1

Copper, antimony and sulfur in elemental form were applied for one-pot solid-state mechanochemical synthesis of skinnerite (Cu3SbS3) in a laboratory mill and an industrial mill. This synthesis was completed after 30 min of milling in the laboratory mill and 120 min in the industrial mill, as corroborated by X-ray diffraction. XRD analysis confirmed the presence of pure monoclinic skinnerite prepared in the laboratory mill and around 76% monoclinic skinnerite, with the secondary phases famatinite (Cu3SbS4; 15%), and tetrahedrite (Cu11.4Sb4S13; 8%), synthesized in the industrial mill. The nanocrystals were agglomerated into micrometer-sized grains in both cases. Both samples were nanocrystalline, as was confirmed with HRTEM. The optical band gap of the Cu3SbS3 prepared in the laboratory mill was determined to be 1.7 eV with UV-Vis spectroscopy. Photocurrent responses verified with I-V measurements under dark and light illumination and Cu3SbS3 nanocrystals showed similar to 45% enhancement of the photoresponsive current at a forward voltage of 0.6 V. The optical and optoelectrical properties of the skinnerite (Cu3SbS3) prepared via laboratory milling are interesting for photovoltaic applications.


January, 2023 | DOI: 10.3390/molecules28010326

Química de Superficies y Catálisis

Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions

Ruiz-Lopez, E; Pelaez, MR; Ruz, MB; Leal, MID; Tejada, MM; Ivanova, S; Centeno, MA
Materials, 16 (2023) 472

Formic acid has recently been revealed to be an excellent hydrogen carrier, and interest in the development of efficient and selective catalysts towards its dehydrogenation has grown. This reaction has been widely explored using homogeneous catalysts; however, from a practical and scalable point of view, heterogeneous catalysts are usually preferred in industry. In this work, formic acid dehydrogenation reactions in both liquid- and vapor-phase conditions have been investigated using heterogeneous catalysts based on mono- or bimetallic Pd/Ru. In all of the explored conditions, the catalysts showed good catalytic activity and selectivity towards the dehydrogenation reaction, avoiding the formation of undesired CO.


January, 2023 | DOI: 10.3390/ma16020472

Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Methanation of CO2 over High Surface Nickel/Aluminates Compounds Prepared by a Self-Generated Carbon Template

Roudane, S; Bettahar, N; Caballero, A; Holgado, JP
Catalysts, 13 (2023) 142

Catalytic gas-phase hydrogenation of CO2 into CH4 was tested under three different nickel/aluminate catalysts obtained from precursors of hexaaluminate composition (MAl16O19, M = Mg, Ca, Ba). These catalysts were prepared using a carbon template method, where carbon is self-generated from a sol-gel that contains an excess of citric acid and the Al and M salts (Ba2+, Ca2+, Mg2+) by two-step calcination in an inert/oxidizing atmosphere. This procedure yielded Ni particles decorating the surface of a porous high surface area matrix, which presents a typical XRD pattern of aluminate structure. Ni particles are obtained with a homogeneous distribution over the surface and an average diameter of ca 25-30 nm. Obtained materials exhibit a high conversion of CO2 below 500 degrees C, yielding CH4 as a final product with selectivity >95%. The observed trend with the alkaline earth cation follows the order NiBaAlO-PRx > NiCaAlO-PRx > NiMgAlO-PRx. We propose that the high performance of the NiBaAlO sample is derived from both an appropriate distribution of Ni particle size and the presence of BaCO3, acting as a CO2 buffer in the process.


January, 2023 | DOI: 10.3390/catal13010142

Materiales Nanoestructurados y Microestructura

Microstructure and activity of Pd catalysts prepared on commercial carbon support for the liquid phase decomposition of formic acid

Arzac, GM; Montes, O; Fernández, A
International Journal of Hydrogen Energy, 48 (2023) 2628-2639

In this work, a series of Pd catalysts supported on commercially available activated carbon (Norit (R)) were prepared by employing different metal precursors (Pd(NO3)2 and Na2PdCl4) by the impregnation-reduction method at different pH. Catalysts were tested for the liquid phase decomposition of formic acid to generate hydrogen. The best results, in terms of small particle size and high catalytic activity were achieved for the Pd/C sample prepared by using Pd(NO3)2 salt impregnated at pH = 2.5, and reduced with sodium borohydride. The particle size of the best Pd/C catalyst is (4.1 +/- 1.4) nm with initial TOFs of 2929 and 683 h-1 at 60 and 30 degrees C respectively and an apparent activation energy of 40 kJ mol-1. Samples prepared by using Na2PdCl4 precursor, consisted of particles with higher size and thus lower activity than the ones prepared with Pd(NO3)2. Regardless the Pd precursor employed, the best results in terms of particle size and activity were achieved at the point of zero charge of the support when the Pd species and the carbon surface were both neutral. The impregnation pH not only determines the particle size, but also the nature of the reducing agent does. The catalytic activity was shown to be size-dependent and it was shown that a mixture of surface Pd0 and PdII oxidation states is beneficial for the activity. When comparing with literature catalysts with similar composition, we found that our best catalyst is competitive enough and that Norit (R) support could be promising for future studies on this reaction.


January, 2023 | DOI: 10.1016/j.ijhydene.2022.10.149

Materiales Coloidales

Carboxylate functionalized NaDy(MoO4)(2) nanoparticles with tunable size and shape as high magnetic field MRI contrast agents

Gomez-Gonzalez, E; Nuñez, NO; Caro, C; Garcia-Martin, ML; Ocaña, M
Journal of Colloid and Interface Science, 629 (2023) 310-321

Uniform sodium-dysprosium double molybdate (NaDy(MoO4)(2)) nanoparticles having different morphologies (spheres and ellipsoids) and tunable size have been synthesized for the first time in literature. The procedure is based on a homogeneous precipitation process at moderated temperatures (<= 220 ?) from solutions containing appropriated precursors dissolved in ethylene glycol-water mixtures, in the absence (spheres) or the presence (ellipsoids) of tartrate anions. The effects of the morphological characteristics (size and shape) of the nanoparticles on the magnetic relaxivity at high field (9.4 T) have been evaluated finding that the latter magnitude was higher for the spheres than for the ellipsoids, indicating their better suitability as contrast agents for high-field magnetic resonance imaging. Such nanoparticles have been successfully coated with polymers bearing carboxylate functional groups through a layer-by -layer process, which improves the colloidal stability of the nanoparticles in physiological media. It has been also found that the coating layer had no significant effects on the nanoparticles relaxivity and that such coated nanoparticles exhibited a high biocompatibility and a high chemical stability. In summary, we have developed NaDy(MoO4)(2 )based bioprobes which meet the required criteria for their use as contrast agents for high-field magnetic resonance imaging. 


January, 2023 | DOI: 10.1016/j.jcis.2022.08.130

Química de Superficies y Catálisis

Selective hydrodeoxygenation of levulinic acid to gamma-valerolactone over Ru supported on functionalized carbon nanofibers

Bounoukta, CE; Megias-Sayago, C; Rendon, N; Ammari, F; Penkova, A; Ivanova, S; Centeno, MA; Odriozola, JA
Sustainable Energy & Fuels, 7 (2023) 857-867

In this work, carbon nanofibers (CNFs) have been successfully functionalized by using different approaches and finally used for the preparation of Ru based catalysts. The organometallic approach has been demonstrated to be suitable for CNF functionalization, leading to well-defined Ru NPs (by adding organosilane, amino or mercapto functionalities, among others) in comparison with mineral acid treatments conventionally used to activate and/or functionalize carbonaceous solids. All catalysts have been tested in levulinic acid hydrodeoxygenation to γ-valerolactone under mild conditions, with the impact of CNF functionalization on the catalysts' performance fully discussed in comparison with unmodified commercial CNFs.


January, 2023 | DOI: 10.1039/d2se01503j

Reactividad de Sólidos

ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics

Koga, N; Vyazovkin, S; Burnham, AK; Favergeon, L; Muravyev, NV; Perez-Maqueda, LA; Saggese, C; Sánchez-Jiménez, PE
Thermochimica Acta, 719 (2023) 179384

In this review article, the Kinetics Committee of the International Confederation for Thermal Analysis and Calorimetry (ICTAC) delivers a collection of recommendations for the kinetic analysis of thermal decomposition processes. These recommendations specifically focus on the thermal decomposition processes in inorganic, organic, and polymeric materials, as well as biomass and solid fuels. A general introduction to the kinetic analysis of thermal decompositions studied by thermal analysis techniques is followed by individual sections that discuss thermal decomposition of specific classes of materials and respective kinetic approaches. In each section, various kinetic analysis procedures are introduced with regard to specific features of the reactions and explained pro-gressively from simple to complex reactions with examples of practical kinetic analysis. These recommendations are expected to provide a guidance for performing reliable and meaningful kinetic analysis in terms of practical usefulness and physico-chemical significance of the results.


January, 2023 | DOI: 10.1016/j.tca.2022.179384

Materiales Ópticos Multifuncionales - Materiales Coloidales

Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties

Cao, WW; Becerro, AI; Castaing, V; Fang, X; Florian, P; Fayon, F; Zanghi, D; Veron, E; Zandona, A; Genevois, C; Pitcher, MJ; Allix, M
Advanced Functional Materials

Y3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare-earth and transition-metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5-xO12 (x not equal 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y3+xAl5-xO12 with 0 <= x <= 0.40 is reported, corresponding to <= 20% of the AlO6 sublattice substituted by Y3+, synthesized by advanced melt-quenching techniques. This impacts the up-conversion luminescence of Yb3+/Er3+-doped systems, whose yellow-green emission differs from the red-orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce3+ system has a different structural response to nonstoichiometry and its down-conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd3.2Al4.8O12 and Gd3.2Ga4.8O12. This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet-type materials.


January, 2023 | DOI: 10.1002/adfm.202213418

 

 

 

 

 

icms