Scientific Papers in SCI
2024
2024
Reactividad de Sólidos
Magnesium calcites for CO2 capture and thermochemical energy storage using the calcium-looping process
Perejón, A; Arcenegui-Troya, J; Sánchez-Jiménez, PE; Diánez, MJ; Pérez-Maqueda, LAEnvironmental Research, 246 (2024) 118119
In this study, a precipitation-based synthesis method has been employed to prepare magnesium calcites with the general formula Ca1-xMgxCO3, with the objective of use them in the calcium looping (CaL) process for CO2 capture (CaL-CCS) and thermochemical energy storage (CaL-CSP). The structure and microstructure of the samples have been characterized. It has been found by X-ray diffraction that the samples with a Ca:Mg molar ratio of 0.5:0.5 and 0.55:0.45 are phase pure, while the samples with molar ratios of 0.7:0.3 and 0.8:0.2 are composed by two phases with different stoichiometry. In addition, the sample prepared with calcium alone shows the aragonite phase. The microstructure of the magnesium-containing samples is composed of nanocrystals, which are aggregated in spherical particles whereas the aragonite sample presents a typical rod-like morphology. The multicycle tests carried out under CaL-CCS conditions show that an increase on the MgO content in the calcined samples results in a reduced value of effective conversion when compared to aragonite. On the other hand, under CaL-CSP conditions, the samples with the higher MgO content exhibit nearly stable effective conversion values around 0.5 after 20 cycles, which improve the results obtained for aragonite and those reported for natural dolomite tested under the same conditions.
April, 2024 | DOI: 10.1016/j.envres.2024.118119
Materiales y Procesos Catalíticos de Interés Ambiental y Energético
MoS2 2D materials induce spinal cord neuroinflammation and neurotoxicity affecting locomotor performance in zebrafish
Di Mauro, G; González, VJ; Bambini, F; Camarda, S; Prado, E; Holgado, JP, Vázquez, E; Ballerini, L; Cellot, GNanoscale Horizons, 9(5)(2024) 785-798
MoS2 nanosheets belong to an emerging family of nanomaterials named bidimensional transition metal dichalcogenides (2D TMDCs). The use of such promising materials, featuring outstanding chemical and physical properties, is expected to increase in several fields of science and technology, with an enhanced risk of environmental dispersion and associated wildlife and human exposures. In this framework, the assessment of MoS2 nanosheets toxicity is instrumental to safe industrial developments. Currently, the impact of the nanomaterial on the nervous tissue is unexplored. In this work, we use as in vivo experimental model the early-stage zebrafish, to investigate whether mechano-chemically exfoliated MoS2 nanosheets reach and affect, when added in the behavioral ambient, the nervous system. By high throughput screening of zebrafish larvae locomotor behavioral changes upon exposure to MoS2 nanosheets and whole organism live imaging of spinal neuronal and glial cell calcium activity, we report that sub-acute and prolonged ambient exposures to MoS2 nanosheets elicit locomotor abnormalities, dependent on dose and observation time. While 25 μg mL−1 concentration treatments exerted transient effects, 50 μg mL−1 ones induced long-lasting changes, correlated to neuroinflammation-driven alterations in the spinal cord, such as astrogliosis, glial intracellular calcium dysregulation, neuronal hyperactivity and motor axons retraction. By combining integrated technological approaches to zebrafish, we described that MoS2 2D nanomaterials can reach, upon water (i.e. ambient) exposure, the nervous system of larvae, resulting in a direct neurological damage.
April, 2024 | DOI: 10.1039/d4nh00041b
Materiales Avanzados
Preparation of Geopolymeric Materials from Industrial Kaolins, with Variable Kaolinite Content and Alkali Silicates Precursors
Martínez-Martínez, S; Bouguermouh, K; Bouzidi, N; Mahtout, L; Sánchez-Soto, PJ; Pérez-Villarejo, LMaterials, 17 (2024) 1839
In the present work, the development of geopolymeric materials with Na or K based on industrial kaolin samples, with variable kaolinite content and alkaline silicates, is studied. XRF, XRD, FTIR and SEM-EDS have been used as characterization techniques. Three ceramic kaolin samples, two from Algeria and one from Charente (France), have been considered. In particular, chemical and mineralogical characterization revealed elements distinct of Si and Al, and the content of pure kaolinite and secondary minerals. Metakaolinite was obtained by grinding and sieving raw kaolin at 80 mu m and then by thermal activation at 750 degrees C for 1 h. This metakaolinite has been used as a base raw material to obtain geopolymers, using for this purpose different formulations of alkaline silicates with NaOH or KOH and variable Si/K molar ratios. The formation of geopolymeric materials by hydroxylation and polycondensation characterized with different Si/Al molar ratios, depending on the original metakaolinite content, has been demonstrated. Sodium carbonates have been detected by XRD and FTIR, and confirmed by SEM-EDS, in two of these geopolymer materials being products of NaOH carbonation.
April, 2024 | DOI: 10.3390/ma17081839
Materiales y Procesos Catalíticos de Interés Ambiental y Energético
Surface Defect Engineered Nano-Cu/TiO2 Photocatalysts for Hydrogen Production
Liccardo, L; Moras, P; Shewerdyaeva, PM; Vomiero, A; Caballero, A; Colón, G; Moretti, EAdvanced Sustainable Systems, 8(3) (2024) 2300418
Surface defects engineered nano-Cu/TiO2 photocatalysts are synthesized through an easy and cost-effective microwave-assisted hydrothermal synthesis, mixing commercial P25 titania (TiO2) and oxalic acid (Ox), followed by 2.0 wt% Cu co-catalyst (labeled as Cu2.0) loading through in situ photodeposition during reaction. The hydrothermal treatment does not affect the catalyst crystalline structure, morphology, nor the surface area. However, depending on the Ox/TiO2 molar ratio used an influence on the optical properties and on the reactivity of the system is detected. The presence of surface defects leads to intraband states formation between valence band and conduction band of bare titania, inducing an important enhancement in the photoactivity. Thus, Cu2.0/gOx/P25 200 (where g is the weight of Ox and 200 the temperature in Celsius degrees used during the synthesis) have been successfully tested as efficient photocatalysts for hydrogen production through methanol (MeOH) reforming under UV light in a MeOH/ H2O solution (10% v/v) by fluxing the system with N2, showing an increased reactivity compared to the bare Cu2.0/P25 system.
March, 2024 | DOI: 10.1002/adsu.202300418
Materiales y Procesos Catalíticos de Interés Ambiental y Energético
Developing and understanding Leaching-Resistant cobalt nanoparticles via N/P incorporation for liquid phase hydroformylation
Galdeano-Ruano, C; Gutiérrez-Tarriño, S; Lopes, CW; Mazarío, J; Chinchilla, LE; Agostini, G; Calvino, JJ; Holgado, JP; Rodriguez-Castellón, E; Roldan, A; Oña-Burgos, PJournal of Catalysis, 431 (2024) 115374
The ultimate target in heterogeneous catalysis is the achievement of robust, resilient and highly efficient materials capable of resisting industrial reaction conditions. Pursuing that goal in liquid -phase hydroformylation poses a unique challenge due to carbon monoxide -induced metal carbonyl species formation, which is directly related to the formation of active homogeneous catalysts by metal leaching. Herein, supported heteroatomincorporated (P and N) Co nanoparticles were developed to enhance the resistance compared with bare Co nanoparticles. The samples underwent characterization using operando XPS, XAS and HR electron microscopy. Overall, P- and N -doped catalysts increased reusability and suppressed leaching. Among the studied catalysts, the one with N as a dopant, CoNx@NC, presents excellent catalytic results for a Co -based catalyst, with a 94% conversion and a selectivity to aldehydes of 80% in only 7.5 h. Even under milder conditions, this catalyst outperformed existing benchmarks in Turnover Numbers (TON) and productivity. In addition, computational simulations provided atomistic insights, shedding light on the remarkable resistance of small Co clusters interacting with N -doped carbon patches.
March, 2024 | DOI: 10.1016/j.jcat.2024.115374
Materiales Avanzados
Effect of olive-pruning fibres as reinforcements of alkali-activated cements based on electric arc furnace slag and biomass bottom ash
Gómez-Casero, MA; Sánchez-Soto, PJ; Castro, E; Eliche-Quesada, DArchives of Civil and Mechanical Engineering, 24(2) (2024) 84
In this work, alkali-activated composites using electric arc furnace slag (50 wt%) and biomass bottom ash (50 wt%) were manufactured, adding olive-pruning fibres as reinforcement. The objective of adding fibres is to improve the flexural strength of composites, as well as to prevent the expansion of cracks as a result of shrinkage. For this reason, composites reinforced with olive-pruning fibres (0.5-2 wt%) untreated and treated with three different solutions to improve matrix-fibre adhesion were manufactured. Treatments developed over fibres were a 10 wt% Na2SiO3 solution, 3 wt% CaCl2 solution and 5 wt% NaOH solution. Mechanical properties, physical properties, thermal properties and the microstructure of composites by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were studied to demonstrate the improvement. Alkaline treatment degraded fibre surface, increasing the matrix-fibre adhesion, and as a consequence, flexural strength increased up to 20% at 90 days of curing. Optimal results were obtained with composites reinforced with 1 wt% of olive-pruning fibre treated by a 10 wt% Na2SiO3 solution. Higher quantity of olive-pruning fibre leads to local agglomeration, which weakens the matrix-fibre adhesion. The effect on the compressive strength is less evident, since the addition of fibres produces an admissible decrease (between 0 and 9% using 0.5 or 1 wt% of fibres), except in composites that use olive pruning treated with 10 wt% Na2SiO3 solution, where values remain stable, similar or better to control paste. A greater ductility of the matrix in all composites was observed. Furthermore, the alkali-activated cement matrix was bonded to olive-pruning fibre better than untreated fibre, as it is shown in SEM images. Thus, the results showed that olive-pruning fibres could be used as reinforcement in the manufacturing of alkali-activated materials when they are treated with alkali solutions.
March, 2024 | DOI: 10.1007/s43452-024-00882-0
Materiales Nanoestructurados y Microestructura
Long-lasting low fluorinated stainless steel hierarchical surfaces for omniphobic, anti-fouling and anti-icing applications
Montes, L; Rico, V; Nuñez-Galvez, F; Arenas, MA; del Campo, AC; Lopez-Flores, V; Espinós, JP; Borrás, A; González-Elipe, AR; López-Santos, CSurfaces and Interfaces, 46 (2024) 104167
Stainless steel (SS) alloys are prevalent in many industries, household appliances or other commodities, where a strict control of surface properties is required to tailor their interaction with the environment. In this work we report a new procedure of stainless steel surface processing that provides a multifunctional response including superhydrophobicity, omniphobicity, self-cleaning, anti-fouling and effective anti-icing capacity, while still preserving a corrosion resistance similar to that of this material in compact form. The method consists of a first nanostructuration step followed by a low fluorination. The nanostructured surfaces presented a dual scale roughness of hierarchical character. The liquid free approach developed in this work to get this singular surface nanostructuration entails a first laser treatment of stainless steel flat substrates, followed by the deposition of a nanostructured thin layer of this material by electron beam evaporation in an oblique angle configuration. The resulting hierarchical surfaces were subjected to fluorination by: (i) the plasma-assisted deposition of a thin Teflon-like coating or (ii) the grafting of fluorinated molecules. The self-cleanable, anti-adherent and ice repellent character of the resulting low fluorinated surfaces outperformed the behaviour of classical slippery surfaces obtained by the infusion of high amounts of fluorinated liquids. These hierarchical SS surfaces withstood mild abrasion tests and the effect of water jets. Moreover, the corrosion behaviour of the fluorinated surfaces determined through their potentiodynamic analysis revealed a similar corrosion resistance than the flat SS substrates. Outstandingly, after these corrosion tests, the fluorinated samples obtained by grafting preserved their surface functionalities without significant degradation. The high mechanical and chemical stability of these low fluorinated samples support their usage for a large variety of applications.
March, 2024 | DOI: 10.1016/j.surfin.2024.104167
Materiales de Diseño para la Energía y Medioambiente
Optimising anode supported BaZr1-xYxO3-δ electrolytes for solid oxide fuel cells: Microstructure, phase evolution and residual stresses analysis
Fernández Muñoz, S; Chacartegui, R; Alba, MD; Ramírez Rico, JJournal of Power Sources, 596 (2024) 234070
Yttrium-doped BaZrO3 is a promising electrolyte for intermediate-temperature protonic ceramic fuel cells. In the anode-supported configuration, a slurry containing the electrolyte is deposited on the surface of a calcined porous anode and sintered. Differences in sintering behaviour and thermal expansion coefficients for the anode and electrolyte result in elastic residual stresses that can impact the long-term stability of the cell during cyclic operation. Half-cells using BaZr0.8Y0.2O3-δ as the electrolyte were fabricated using the solid-state reaction sintering method under various sintering conditions. Comprehensive microstructure and residual stress analyses as a function of processing parameters were performed using two-dimensional X-ray diffraction, Rietveld refinement, and scanning electron microscopy, before and after the half-cells were reduced under hydrogen, giving a complete picture of phase, microstructure, and stress evolution under thermal and reduction cycles like the actual operation of the cell. Our results reveal that a temperature of 1400 °C and shorter soaking times might be advantageous for obtaining phase-pure and thin yttrium-doped BaZrO3 electrolytes with improved microstructure and the presence of compressive residual stress. These findings offer valuable insights into optimising the fabrication process of BaZrO3-based electrolytes, leading to enhanced performance and long-term stability of anode-supported protonic ceramic fuel cells operating at intermediate temperatures.
March, 2024 | DOI: 10.1016/j.jpowsour.2024.234070
Química de Superficies y Catálisis
Highly Effective Non-Noble MnO2 Catalysts for 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid
Alvarez-Hernández, D; Megías-Sayago, C; Penkova, A; Centeno, MA; Ivanova, SChemsuschem, 17 (2024) e202400115
Noble metal-free catalyst or catalytic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid are proposed in this study as a proposal to solve one of the great disadvantages of this reaction of using preferably noble metal-based catalysts. The catalytic activity of six MnO2 crystal structures is studied as alternative. The obtained results showed a strong connection between catalytic activity the type of MnO2 structure organization and redox behavior. Among all tested catalysts, epsilon-MnO2 showed the best performance with an excellent yield of 74 % of 2,5-furandicarboxylic acid at full -hydroxymethylfurfural conversion.
March, 2024 | DOI: 10.1002/cssc.202400115
Química de Superficies y Catálisis
A profitability study for catalytic ammonia production from renewable landfill biogas: Charting a route for the next generation of green ammonia
González-Arias, J; Nawaz, MA; Vidal-Barrero, F; Reina, TRFuel, 360 (2024) 130584
This study introduces a novel techno-economic approach to renewable ammonia production using landfill biogas. The proposed process involves bio-hydrogen generation from landfill biogas, nitrogen production via air separation, and the Haber-Bosch process. Building on our prior research, which demonstrated the economic competitiveness of renewable hydrogen production from landfill gas, we extend our investigation to analyze the feasibility of producing renewable ammonia from biogas-derived bio-hydrogen. However, the economic analysis for the baseline scenario reveals the current lack of profitability (net present value of −18.3 M€), with ammonia prices needing to quadruple to achieve profitability. Major costs, including investment, maintenance, overhead expenses, and electricity, collectively account for over 70%, suggesting the potential efficacy of investment subsidies as a political tool. Only cases with subsidies exceeding 50% of total investment costs, under current ammonia market prices, would render the green ammonia route profitable. Our findings underscore the significant techno-economic challenges in realizing renewable ammonia production, emphasizing the need for innovation in process engineering and catalytic technologies to enable competitive and scalable green ammonia production.
March, 2024 | DOI: 10.1016/j.fuel.2023.130584
- ‹ previous
- 9 of 214
- next ›