Menú secundario

Artículos SCI



2012


Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Making Photo-selective TiO2 Materials by Cation–Anion Codoping: From Structure and Electronic Properties to Photoactivity

Marquez, AM; Plata, JJ; Ortega, Y; Sanz, JF; Colon, G; Kubacka, A; Fernandez-Garcia, M
Journal of Physical Chemistry C, 116 (2012) 18759-18767

Show abstract ▽

Photoselective oxidation yielding high-added value chemicals appears as a green novel process with potential to be explored. In this study we combine spectroscopic XPS (N 1s and O 1s) and multiwavelength Raman data with density functional theory calculations to explore the structural and electronic properties of W,N-codoped TiO2 anatase surfaces and interpret the outstanding photocatalytic properties of such a system in partial oxidation reactions. Theoretical calculations allow us to examine several substitutional and N-interstitial configurations at different concentrations of the W,N dopants (similar to those experimentally found), as well as their interaction with structural point defects: Ti cation vacant sites and surface wolframyl species that are required to compensate the extra charge of the W6+ and N-containing anions. The joint use of theoretical and experimental XPS and Raman tools renders key structural information of W,N-codoped microcrystalline TiO2 solids. The incorporation of N at substitutional positions of anatase with the concomitant presence of W═O species introduces localized states in the band gap, a result that is critical in interpreting the chemical behavior of the solids. The combination of the electronic and geometric structural information leads to a simple mechanism that rationalizes the experimentally observed photoactivity and selectivity in partial oxidation reactions.


Septiembre, 2012 | DOI: 10.1021/jp3045143

Nanotecnología en Superficies y Plasma

Characterization of highly crosslinked polyethylenes by colorimetry

Martinez-Morlanes, MJ; Terriza, A; Yubero, F; Puertolas, JA
Polymer Testing, 31 (2012) 841-847

Show abstract ▽

Colour analysis appears to be a robust technique for characterizing vitamin E doping and gamma irradiation of medical grade polyethylene samples. The analysis procedure described in this paper is of great interest because it can easily distinguish between polyethylene samples with differences in vitamin E (α-tocopherol) doping of about 0.1 wt% and gamma irradiation doses of 30 kGy. It is found that the colour differences (with respect to untreated samples) induced by gamma irradiation and/or vitamin E doping add-up linearly. This method for detecting the presence of vitamin E is fast, simple and non-destructive.


Septiembre, 2012 | DOI: 10.1016/j.polymertesting.2012.06.005

Materiales Nanoestructurados y Microestructura

Phase composition and tribomechanical properties of Ti-B-C nanocomposite coatings prepared by magnetron sputtering

Sanchez-Lopez, JC; Abad, MD; Justo, A; Gago, R; Endrino, JL; Garcia-Luis, A; Brizuela, M
Journal of Physics D: Applied Physics, 45 (2012) 375401

Show abstract ▽

Protective nanocomposite coatings based on hard ceramic phases (TiC, TiB2) combined with amorphous carbon (a-C) are of interest because of their adequate balance between mechanical and tribological performances. In this work, Ti–B–C nanocomposite coatings were prepared by co-sputtering of graphite and TiB2 targets. Varying the discharge power ratio applied to the graphite and TiB2 targets from 0 to 2, the a-C content in the coatings could be tuned from 0 to 60%, as observed by means of Raman and x-ray photoelectron spectroscopy (XPS). The microstructural characterization demonstrated a progressive decrease in crystallinity from an initial nanocrystalline (nc) TiB2-like structure to a distorted TiBxCy ternary compound with increasing C concentration. X-ray absorption near-edge structure measurements on the B K-edge helped to determine a hexagonal arrangement around the B atoms in the ternary TiBxCy phase. A fitting analysis of the C 1s XPS peak allowed us to evaluate the relative amount of a-C and TiBxCy components. A drastic change in hardness (from 52 to 13 GPa) and friction coefficient values (from 0.8 to 0.2) is noticed when moving from nc-TiB2 to TiBC/a-C nanocomposites. The fraction of a-C necessary to decrease the friction below 0.2 was found to be 45%. Raman observation of the wear tracks determined the presence of disordered sp2-bonded carbon phase associated with the diminution of the friction level.


Septiembre, 2012 | DOI: 10.1088/0022-3727/45/37/375401

Reactividad de Sólidos - Fotocatálisis Heterogénea: Aplicaciones

Obituary: Prof. Andrés Ortega

Luque, JMC; Martinez, FJG; Azana, MM; Perez, CR
Thermochimica Acta, 543 (2012) 318-319

Show abstract ▽

Prof. Andrés Ortega passed away on last January after a painful and long illness. He was Professor of Inorganic Chemistry at the University of Seville (Spain) and was an outstanding researcher in the field of solid state reaction kinetics, an area to which he devoted his entire career since 1983, when he submitted his PhD thesis entitled ‘Critical study of non-isothermal methods for the kinetic analysis of solid-state reactions’. During his post doc stage and collaboration with Prof. Jean Rouquerol, his interest was raised by the Sample Controlled Thermal Analysis (SCTA) technique and its application to the kinetic study of solid state reactions, this latter one developed in Seville along with Prof. José Manuel Criado. A paper from this period should be highlighted: ‘Correlation between the shape of controlled-rate thermal analysis curves and the kinetics of solid-state reactions’ [Thermochimica Acta 157 (1990) 171], the most cited one in his research career. Most of his scientific production was published in Thermochimica Acta and in the Journal of Thermal Analysis and Calorimetry. A tireless professional, he remained active until a few weeks before dying. Being seriously ill he developed a method for the kinetic analysis of reactions with variable activation energies that notably simplifies the previous one proposed by Vyazovkin. The results were published in Thermochimica Acta under the title ‘A simple and precise linear integral method for isoconversional data’ [Thermochim. Acta 474 (2008) 81]. The high number of citations of this article – according to the ISI WEB of Knowledge – in spite of the short time elapsed since it was published reveals its impact within the scientific community.

He was also very much involved in teaching duties, developing new subjects and applying new teaching methodologies. He chaired two important academic positions at the University of Seville related to his works on teaching and educational sciences, as Director of the Institute of Educational Science and as Chairman of the Committee on Education of the University.

Though he sometimes appeared to be reserved, Andrés was a kind man, always ready to help in any problem that was presented to him. With a critical attitude and many cultural interests, he had a vast knowledge and a great ability to interpret the most diverse questions, frequently presenting a reasoning alternative to those commonly established. This was a continuous source of enrichment for both his friends and colleagues, who never will forget him.


Septiembre, 2012 | DOI: 10.1016/j.tca.2012.06.001

Nanotecnología en Superficies y Plasma

Wall slip phenomena in concentrated ionic liquid-based magnetorheological fluids

Gomez-Ramirez, A; Lopez-Lopez, MT; Gonzalez-Caballero, F; Duran, JDG
Rheologica Acta, 51 (2012) 793-803

Show abstract ▽

Ionic liquids (ILs) have been recently proposed as carrier for magnetorheological (MR) fluids. Their special properties, such as very low vapor pressure and high thermal stability, make ILs highly suitable dispersion media to increase the broad range of technological applications that magnetorheological fluids already have. It has been just reported that using ILs as carriers in MR fluids an improvement in the colloidal stability and suspension redispersibility is obtained. In this work, the magnetorheological behavior of highly concentrated suspensions in ILs is studied. Two kinds of suspensions were analyzed: using an ionic liquid of low conductivity and a mineral oil as carriers. In both cases, silica-coated iron microparticles were used as solid phase, being the solid volume concentration of 50% vol. A complete magnetorheological analysis focused on the wall slip phenomenon was performed. Steady-state and oscillatory experiments were carried out. In order to study wall slip effects, all experiments were performed with a plate-plate system, using both smooth and rough measuring surfaces. A significant effect of wall slip was observed when the experiments were performed using smooth surfaces. The novelty of this paper is mainly based on (1) the use of an ionic liquid as carrier to prepare magnetic suspensions, and (2) the analysis of wall slip phenomena in MR fluids with a particle content close to the maximum packing fraction.


Septiembre, 2012 | DOI: 10.1007/s00397-012-0639-5

 

 

 

 

 

icms