Menú secundario

Artículos SCI



2008


Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Phase composition-dependent physical and mechanical properties of YbxZr1-xO2-x/2 solid solutions

Hartmanova, M; Kubel, F; Bursikova, V; Lomonova, EE; Holgado, JP; Navratil, V; Navratil, K; Kundracik, F
Journal of Physics and Chemistry of Solids, 69 (2008) 805-814

Show abstract ▽

The paper represents a detailed insight into the correlation between changes of the phase composition of crystalline YbxZr1-xO2-x/2 solid solutions and their structural, electrical, mechanical and optical properties. Particularly, the effect of the crystal growth conditions and stabilizer amount in the range of 1.5-13.8 mol% of Yb2O3 are studied in terms of Rietveld analysis of powder X-ray diffraction data, electrical conductivity measured by impedance spectroscopy, absorption coefficient and refractive index measurements, Vickers microhardness (classical technique) as well as the plastic microhardness and effective elastic modulus (DSI-depth-sensing indentation technique). Potential applications of the investigated systems Lire discussed in view of the results obtained.


Abril, 2008 | DOI: 10.1016/j.jpcs.2007.09.002

A simulation of the mass-transfer effects on the kinetics of solid-gas reactions

Ortega, A
International Journal of Chemical Kinetics, 40 (2008) 217-222

Show abstract ▽

A theoretical analysis of the influence of mass-transfer effect on the kinetic of solid-gas reactions has been carried out by assuming that the partial pressures of the gases generated in the reaction are proportional to the reaction rate. The influence of mass-transfer phenomena on the apparent activation energy, calculated by the isoconversional methods of Friedman, and on the reaction model is discussed. In the present study, simulated nonisotherm, isotherm, and controlled rate thermal analysis (CRTA) data have been used. Master plots based on the differential forms of the kinetic equations describing solid-state reactions have been employed by using the concept of the generalized time (theta), introduced by Ozawa; this permits the application of these master plots to the kinetic analysis of reactions whatever the type of temperature program used for recording the experimental data. it has been shown that when the simulated mass-transfer effect is present the variable effective activation energy E remains nearly constant while the reaction model approaches zero order.


Abril, 2008 | DOI: 10.1002/kin.20308

Reactividad de Sólidos

Transport properties and microstructure changes of talc characterized by emanation thermal analysis

Perez-Maqueda, LA; Balek, V; Poyato, J; Subrt, J; Benes, M; Ramirez-Valle, V; Buntseva, IM; Beckman, IN; Perez-Rodriguez, JL
Journal of Thermal Analysis and Calorimetry, 92 (2008) 253-258

Show abstract ▽

Thermal behavior of talc samples (from locality Puebla de Lillo, Spain) were characterized by emanation thermal analysis (ETA), DTA and TG. The ETA, based on the measurement of radon release rate from samples, revealed a closing up of surface micro-cracks and annealing of microstructure irregularities of the talc samples on heating in the range 200-500 degrees C.

For ground talc sample a crystallization of non-crystalline phase formed by grinding, into orthorhombic enstatite was characterized as a decrease of radon mobility in the range 785-825 degrees C and by a DTA exothermal effect with the maximum at 830 degrees C. ETA results characterized the microstructure development of the talc samples on heating and served to evaluate their radon mobility and transport properties on heating and cooling. Transport properties of the talc samples were evaluated by using ETA experimental data measured during heating to 600 and 1300 degrees C, respectively, and subsequent cooling to room temperature.


Abril, 2008 | DOI: 10.1007/s10973-007-8819-8

Materiales Coloidales - Materiales Ópticos Multifuncionales

A universal curve for the magnetocaloric effect: an analysis based on scaling relations

Colodrero, Silvia; Ocana, Manuel; Miguez, Hernan
Langmuir, 24, (2008) 4430–4434

Show abstract ▽

Herein we present a fast, reliable method for building nanoparticle-based 1D photonic crystals in which a periodic modulation of the refractive index is built by alternating different types of nanoparticles and by controlling the level of porosity of each layer. The versatility of the method is further confirmed by building up optically doped photonic crystals in which the opening of transmission windows due to the creation of defect states in the gap is demonstrated. The potential of this new type of structure as a sensing material is illustrated by analyzing the specific color changes induced by the infiltration of solvents of different refractive indexes.


Marzo, 2008 | DOI: 10.1021/la703987r

Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Nanostructured Ti-M mixed-metal oxides: Toward a visible light-driven photocatalyst

Kubacka, A.; Fernandez-Garcia, M.; Colon, G.
Journal of Catalysis, 254 (2008) 272-284

Show abstract ▽

In this report we investigate the structure-activity relationship in Ti-M (M = V, Mo, Nb, W) mixed-metal oxides with anatase structure used for the photoelimination of toluene under sunlight-type excitation. These systems were prepared by a microemulsion method, and their physicochemical properties were characterized by a multitechnique approach using X-ray diffraction-Rietveld, photoelectron spectroscopy, and Raman and UV-visible spectroscopy. The preparation method allowed the incorporation of up to around 20 at % of Mo, Nb, and W, whereas a significantly inferior solubility limit, below 5 at % was observed for V. The presence of nonpunctual defects, intimately related to the existence of MOx clustering, produced electronic mid-gap states involved in charge recombination and appeared to be the most negative factor influencing photoactivity. The maximization of photoactivity occurred for Ti-M samples with the highest doing level, together with a minimum structural disturbance of the anatase-type structure. The physicochemical bases for the photoactivity behavior of the Ti-M samples as function of the M content and, in particular, the presence of partial (for a specific Ti-M series) or global maxima are discussed. 


Marzo, 2008 | DOI: 10.1016/j.jcat.2008.01.005

 

 

 

 

 

icms