Menú secundario

Scientific Papers in SCI



2023


Materiales de Diseño para la Energía y Medioambiente

The Role of Protective Surface Coatings on the Thermal Stability of Delithiated Ni-Rich Layered Oxide Cathode Materials

Reissig, F; Ramirez-Rico, J; Placke, TJ; Winter, M; Schmuch, R; Gomez-Martin, A
Batteries-Basel, 9 (2023) 245

To achieve a broader public acceptance for electric vehicles based on lithium-ion battery (LIB) technology, long driving ranges, low cost, and high safety are needed. A promising pathway to address these key parameters lies in the further improvement of Ni-rich cathode materials for LIB cells. Despite the higher achieved capacities and thus energy densities, there are major drawbacks in terms of capacity retention and thermal stability (of the charged cathode) which are crucial for customer acceptance and can be mitigated by protecting cathode particles. We studied the impact of surface modifications on cycle life and thermal stability of LiNi0.90Co0.05Mn0.05O2 layered oxide cathodes with WO3 by a simple sol-gel coating process. Several advanced analytical techniques such as low-energy ion scattering, differential scanning calorimetry, and high-temperature synchrotron X-ray powder diffraction of delithiated cathode materials, as well as charge/discharge cycling give significant insights into the impact of surface coverage of the coatings on mitigating degradation mechanisms. The results show that successful surface modifications of WO3 with a surface coverage of only 20% can prolong the cycle life of an LIB cell and play a crucial role in improving the thermal stability and, hence, the safety of LIBs.


April, 2023 | DOI: 10.3390/batteries9050245

Nanotecnología en Superficies y Plasma

Advanced Cellulose-Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators

Gonzalez, J; Ghaffarinejad, A; Ivanov, M; Ferreira, P; Vilarinho, PM; Borras, A; Amorin, H; Wicklein, B
Nanomaterials, 13 (2023) 1206

Natural polymers such as cellulose have interesting tribo- and piezoelectric properties for paper-based energy harvesters, but their low performance in providing sufficient output power is still an impediment to a wider deployment for IoT and other low-power applications. In this study, different types of celluloses were combined with nanosized carbon fillers to investigate their effect on the enhancement of the electrical properties in the final nanogenerator devices. Cellulose pulp (CP), microcrystalline cellulose (MCC) and cellulose nanofibers (CNFs) were blended with carbon black (CB), carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The microstructure of the nanocomposite films was characterized by scanning electron and probe microscopies, and the electrical properties were measured macroscopically and at the local scale by piezoresponse force microscopy. The highest generated output voltage in triboelectric mode was obtained from MCC films with CNTs and CB, while the highest piezoelectric voltage was produced in CNF-CNT films. The obtained electrical responses were discussed in relation to the material properties. Analysis of the microscopic response shows that pulp has a higher local piezoelectric d(33) coefficient (145 pC/N) than CNF (14 pC/N), while the macroscopic response is greatly influenced by the excitation mode and the effective orientation of the crystals relative to the mechanical stress. The increased electricity produced from cellulose nanocomposites may lead to more efficient and biodegradable nanogenerators.


April, 2023 | DOI: 10.3390/nano13071206 | Digital CSIC: http://hdl.handle.net/10261/308043

Química de Superficies y Catálisis

Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance

Miao, BJ; Cao, YE; Zhu, QS; Nawaz, MA; Ordiozola, JA; Reina, TR; Bai, ZM; Ren, JN; Wei, FC
Advanced Composites and Hybrid Materials, 6 (2023) 61

The signal crosstalk and electromagnetic interference (EMI) problems direly need to be resolved in the rapid development of modern microwave communication technology for a better working frequency and transmission power of electronic systems. Where the new absorbing materials such as molybdenum disulfide (MoS2)/titania (TiO2)/Ti2CTx and MoS2/Ti2CTx composites could meet the requirement of "thin, strong, light weight, and wide band" for excellent absorbing performance. In this work, a lighter Ti2CTx material was selected as the matrix, and MoS2 was in-situ grown on Ti2CTx matrix by traditional hydrothermal method and microwave solvothermal method. The fabricated composite exhibited synergic effect of two-dimensional heterostructural interface and double dielectric elements, where a small amount of TiO2 and a certain proportion of MoS2 jointly improve the impedance matching of the composite material. In here, the extreme reflection loss (RLmin) can reach - 54.70 dB (with a frequency of 7.59 GHz, 3.39 mm thickness), and the maximum effective absorption bandwidth (EAB(max)) can reach 4 GHz. Polyethylene glycol 200 was used as the solvent instead of water to make Ti2CTx less oxidized during the composite process, where the microwave heating would attain fast speed, short time, high efficiency, and uniform product. Since, the MoS2/Ti2CTx composite without oxidizing possessed a wider effective absorption bandwidth (EAB) at a thinner thickness, thus resulting in the excellent microwave absorption performance and confirming the validity and rationality of new microwave absorption materials.


April, 2023 | DOI: 10.1007/s42114-023-00643-2

Materiales y Procesos Catalíticos de Interés Ambiental y Energético

High-Performance Photocatalytic H2 Production Using a Binary Cu/ TiO2/SrTiO3 Heterojunction

Gonzalez-Tejero, M; Villachica-Llamosas, JG; Ruiz-Aguirre, A; Colon, G
ACS Applied Energy Materials, 6 (2023) 4007-4015

Cu/TiO2/SrTiO3 hybrid structures have been synthesized by the simple impregnation method from Cu/TiO2 and SrTiO3 systems. The structural and surface characterization stated that Cu/TiO2/SrTiO3 composites form an effective covering of SrTiO3 by Cu/TiO2. The heterostructured catalysts lead to an outstanding improved photoactivity for hydrogen production from methanol photoreforming that would be related with the efficient separation of charge pairs favored by the Cu/ TiO2/SrTiO3 heterojunction. The best photoproduction is attained for the 30 wt % SrTiO3 heterojunction showing 81.7 mmol/g H2 after 6 h (leading to an apparent quantum yield of ca 1%), 1.7 times higher than that of bare Cu/TiO2.


April, 2023 | DOI: 10.1021/acsaem.3c00219

Reactividad de Sólidos

Large-scale oxygen-enriched air (OEA) production from polymeric membranes for partial oxycombustion processes

Garcia-Luna, S; Ortiz, C; Chacartegui, R; Perez-Maqueda, LA
Energy, 268 (2023) 126697

Partial oxycombustion using Oxygen-Enriched Air (OEA), produced by air-gas separation with polymeric membranes, combined synergistically with CO2 capture technologies, can reduce the overall energy cost of CO2 capture, and it is a potential alternative to conventional CO2 capture technologies. An exhaustive review of polymeric membranes for this application is presented. The best membranes showed permeability values in the 450-25,100 barrer and selectivities higher than 3.6 for large-scale operations. These membranes can produce OEA with oxygen molar concentrations of up to 40% for retrofitting large-scale power plants (similar to 500 MWe) with partial oxycombustion. For OEA production, the polymeric membrane system is more efficient than cryogenic distillation since the specific power consumption of the former is 35.17 kWh/ton OEA. In comparison, that of the latter is 49.57 kWh/ton OEA. This work proposes that the OEA produced by the membranes feed a partial oxycombustion process integrated with calcium looping within a hybrid CO2 capture system. The power con-sumption of the hybrid CO2 capture system proposed here is 29.05% lower than in the case OEA is produced from cryogenic distillation, which justifies the potential interest in using polymeric membranes for OEA production.


April, 2023 | DOI: 10.1016/j.energy.2023.126697

Fotocatálisis Heterogénea: Aplicaciones

Photocatalytic treatment based on TiO2 for a coal mining drainage

Murcia-Mesa, JJ; Patino-Castillo, CG; Rojas-Sarmiento, HA; Navio-Santos, A; Hidalgo-Lopez, MD; Angel-Botero, A
Revista Facultad de Ingeniería-Universidad de Antioquia, 107 (2023) 88-101

The aim of the present work was to evaluate the effectiveness of a heterogeneous photocatalyst based on TiO2 in the treatment of coal mining drainage which contains a variety of heavy metals and high concentration sulfates and sulfides. The photocatalytic behavior of the commercial reference Sigma Aldrich and the different materials synthesized using the Sol-gel methodology with surface modifications using sulfation and fluorination processes were analyzed. To find a possible correlation between the physicochemical properties of photocatalysts and their behavior, a characterization was carried out using X-Ray Diffraction (XRD), X-Ray Fluorescence spectrometry (XRF), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance Spectra (UV-Vis DRS), N2 physisorption, X-ray photoelectron spectroscopy (XPS), and particle size analysis. Results indicated that the modification of the TiO2 prepared in the laboratory using sulfation and fluorination allowed the successful control of the physicochemical properties of this oxide. However, commercial TiO2 showed the greatest effectiveness in removing metals such as: Fe, Cu, Cr, and As after a photocatalytic reaction for a maximum of 1 hour under continuous nitrogen flow and a light intensity of 120 W/m2.


April, 2023 | DOI: 10.17533/udea.redin.20211063

Química de Superficies y Catálisis

In-situ DRIFTS steady-state study of CO2 and CO methanation over Ni-promoted catalysts

González-Castaño, M; González-Arias, J; Bobadilla, LF; Ruíz-López, E; Odriozola, JA; Arellano-García, H
Fuel, 338 (2023) 127241

Promoting the performance of catalytic systems by incorporating small amount of alkali has been proved effective for several reactions whilst controversial outcomes are reported for the synthetic natural gas production. This work studies a series of Ni catalysts for CO2 and CO methanation reactions. In-situ DRIFTS spectroscopy evidenced similar reaction intermediates for all evaluated systems and it is proposed a reaction mechanism based on: i) formate decomposition and ii) hydrogenation of lineal carbonyl species to methane. Compared to bare Ni, the enhanced CO2 methanation rates attained by NiFe/Al and NiFeK/Al systems are associated to promoted formates decomposition into lineal carbonyl species. Also for CO methanation, the differences in the catalysts' performances were associated to the relative concentration of lineal carbonyl species. Under CO methanation conditions and opposing the CO2 methanation results where the incorporation of K delivered promoted catalytic behaviours, worsened CO methanation rates were discerned for the NiFeK/Al system.


April, 2023 | DOI: 10.1016/j.fuel.2022.127241

Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Facile Synthesis of Heterogeneous Indium Nanoparticles for Formate Production via CO2 Electroreduction

Perez-Sequera, AC; Diaz-Perez, MA; Angulo, MAL; Holgado, JP; Serrano-Ruiz, JC
Nanomaterials, 13 (2023) 3052

In this study, a simple and scalable method to obtain heterogeneous indium nanoparticles and carbon-supported indium nanoparticles under mild conditions is described. Physicochemical characterization by X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed heterogeneous morphologies for the In nanoparticles in all cases. Apart from In-0, XPS revealed the presence of oxidized In species on the carbon-supported samples, whereas these species were not observed for the unsupported samples. The best-in-class catalyst (In-50/C-50) exhibited a high formate Faradaic efficiency (FE) near the unit (above 97%) at -1.6 V vs. Ag/AgCl, achieving a stable current density around -10 mA center dot cm(geo)(-2), in a common H-cell. While In-0 sites are the main active sites for the reaction, the presence of oxidized In species could play a role in the improved performance of the supported samples.


April, 2023 | DOI: 10.3390/nano13081304

Fotocatálisis Heterogénea: Aplicaciones

Boosting the photocatalytic properties of NaTaO3 by coupling with AgBr

Puga, F; Navío, JA; Hidalgo, MC
Photochemical & Photobiological Sciences, 22 (2023) 549-566

AgBr/NaTaO3 composites, with different molar % of NaTaO3 (Br/NTO(X%)), have been synthesized by simple precipitation methods; bare NaTaO3 was synthesized by hydrothermal procedure, while AgBr was synthesized by a precipitation procedure using cetyl-tri-methyl-ammonium bromide (CTAB) and AgNO3. Samples have been characterized by X-ray diffraction (XRD), N2 adsorption, UV–vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of the as-prepared photo-catalysts was evaluated through photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and caffeic acid (CAFA) under UV and visible illumination. Single AgBr material and Br/NTO(X%) composites displayed the ability to absorb light in the visible region, while NaTaO3 is only photoactive under UV irradiation. Based on the position of conduction and valence bands of AgBr and NaTaO3, the heterojunction between these two photo-catalysts corresponds to a type II junction. In the case of photocatalytic degradation of RhB and CAFA, Br/NTO(x%) composites have highest photocatalytic activity than that obtained by both parental materials under the same operational conditions. AgBr and Br/NTO(x%) composites achieve a fast degradation of MO, together with a considerable adsorption capacity, attributed to the presence of a remaining amount of residual CTAB on the AgBr surface. In summary, coupling AgBr with NaTaO3 improves the photocatalytic activity under both UV and visible illumination with respect to the parental components, but the performance of the composites is highly dependent on the type of substrate to be degraded and the illumination conditions.


March, 2023 | DOI: 10.1007/s43630-022-00334-9

Materiales Ópticos Multifuncionales

Origin of anomalously stabilizing ice layers on methane gas hydrates near rock surface

Li, Y; Corkery, RW; Carretero-Palacios, S; Berland, K; Esteso, V; Fiedler, J; Milton, KA; Brevik, I; Bostrom, M
Physical Chemistry Chemical Physics, 25 (2023) 6636-6652

Gas hydrates (GHs) in water close to freezing temperatures can be stabilised via the formation of ice layers. In a recent work [Bostrom et al., Astron. Astrophys., A54, 650, 2021], it was found that a surface region with partial gas dilution could be essential for obtaining nano- to micron-sized anomalously stabilizing ice layers. In this paper, it is demonstrated that the Casimir-Lifshitz free energy in multi-layer systems could induce thinner, but more stable, ice layers in cavities than those found for gas hydrates in a large reservoir of cold water. The thickness and stability of such ice layers in a pore filled with cold water could influence the leakage of gas molecules. Additional contributions, e.g. from salt-induced stresses, can also be of importance, and are briefly discussed.


March, 2023 | DOI: 10.1039/d2cp04883c

 

 

 

 

 

icms