Menú secundario

Scientific Papers in SCI



2022


Fotocatálisis Heterogénea: Aplicaciones

Effective photocatalytic conversion of formic acid using iron, copper and sulphate doped TiO2

Zouheir, M; Tanji, K; Navío, JA; Hidalgo, MC; Jaramillo-Paez, CA; Kherbeche, A
Journal of Central South University, 29 (2022) 3592-3607

In this paper, the combined addition of copper or iron and sulphate ions onto TiO2 prepared by a simple sol-gel method is studied for formic acid photocatalytic conversion. A wide structural and morphological characterization of the different photocatalysts was performed by X-ray diffraction (XRD), N2-physisorption for BET surface area measurements, scanning and transmission electronic microscopies (SEM and TEM), UV-Vis diffuse spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS), in order to correlate the physico-chemical properties of the materials to their photocatalytic efficiencies for formic acid oxidation. Results have shown important differences among the catalysts depending on the metal added. Sulphated TiO2/Cu (1%Cu) was the best photocatalyst obtaining about 100% formic acid conversion in only 5 min. The appropriate physico-chemical features of this photocatalyst, given by the addition of combined copper and sulphate ions, explain its excellence in photocatalytic reaction.


November, 2022 | DOI: 10.1007/s11771-022-5172-9

Materiales Nanoestructurados y Microestructura

Morphologically diverse CaCO3 microparticles and their incorporation into recycled cellulose for circular economy

Guerra-Garces, J; Garcia-Negrete, CA; Pastor-Sierra, K; Arteaga, GC; Barrera-Vargas, M; de Haro, MJ; Fernandez, A
Materials Today Sustainability, 19 (2022) 100166

The main raw material for manufacture of paper is cellulose fibers that can be virgin or recycled. Globally, 70% of the Tetra Pak packages sold are not recycled and remain as unused wastes. Therefore, the development of alternatives to promote greater recycling and sustainable use of these packages is of great interest. In this study, the formation of precipitated calcium carbonates (PCC) in the presence of carboxymethyl cellulose (CMC) is studied at different temperatures, and the morphologically diverse particles obtained are explored as filler for composites based on cellulosic fibers recovered from Tetra Pak containers. It was found that the addition of filler does not lead to deterioration of either tensile strength or thermal and stability of the obtained composite samples. Results also suggest that the morphological diversity of the filler contributes to a more efficient filling of the interfibrillar spaces of cellulosic fibers and, in turn, to the fiber and filler compatibility.


November, 2022 | DOI: 10.1016/j.mtsust.2022.100166

Reactividad de Sólidos

Supercooled sodium acetate aqueous solution for long-term heat storage to support heating decarbonisation

Lizana, J; Sanchez-Jimenez, PE; Chacartegui, R; Becerra, JA; Perez-Maqueda, LA
Journal of Energy Storage, 55 (2022) 105584

Heating decarbonisation through electrification requires the development of novel heat batteries. They should be suitable for the specific application and match the operation conditions of domestic renewable energy sources. Supercooled liquids, often considered a drawback of phase change materials, are among the most promising technologies supporting heating decarbonisation. Although some studies have shed light on stable supercooling, the fundamentals and stability remain open problems not always accompanied by relevant experimental in-vestigations. This research critically analyses the physic and chemistry of sodium acetate (SA, NaCH3COO) aqueous solution, a low-cost, non-toxic, and abundant compound with stable supercooling for long-term heat storage. It has an appropriate phase change temperature for high-density heat storage using heat pumps or solar thermal technologies in residential applications. The existing discrepancies in literature are critically discussed through a systematic experimental evaluation, providing novel insights into efficient material design and appropriate boundary conditions for reliable material use in long-term heat batteries. Despite previous studies showing that the thermal reliability and stability of sodium acetate aqueous solution as a supercooled liquid for heat storage cannot be guaranteed, this study demonstrates that through an appropriate encapsulation and sealing method, the peritectic composition of sodium acetate solution (p-SA 58 wt%) can be used as a super-cooled liquid for long-term heat storage with a stable melting temperature of 57 degrees C, appropriate for domestic heat technologies. It is demonstrated that energy storage efficiency can be maintained under cycling, with a constant latent heat storage capacity of 245 kJ/kg and a volumetric storage density of 314 MJ/m3. It was confirmed that the material should achieve a fully-melted state for stable supercooling. Finally, local cooling and retaining seed crystals through high pressure were highlighted as the most suitable basic principles for successful crystallization and heat release. This promising material can store energy for long periods without latent heat losses due to its stable subcooling. Latent heat can be released when required at any selected time and tem-perature just by a simple activation process.


November, 2022 | DOI: 10.1016/j.est.2022.105584

Materiales Ópticos Multifuncionales

Enhanced red-UC luminescence through Ce3+ co-doping in NaBiF4:Yb3+/Ho3+(Er3+)/Ce3+ phosphors prepared by ultrafast coprecipitation approach

Giordano, L; Du, H; Castaing, V; Luan, F; Guo, D; Viana, B
Optical Materials X, 16 (2022) 100199

Series of Yb3+/Ho3+(Er3+)/Ce3+ co-doped NaBiF4 phosphors were synthesized through an ultrafast co-precipitation reaction technique at room temperature. The effect of the Ce3+ ions on the crystal structure and upconversion (UC) luminescence properties of the studied samples were investigated in detail. FTIR and XPS demonstrated the pre-formation of NaBiF4 and the introduction of Yb3+, Ho3+, Er3+ and Ce3+ all as dopants in the host materials. Under 980 nm excitation, NaBiF4:Yb3+,Ho3+(Er3+),Ce3+performed the characteristic emission of the activator ion, and the introduction of Ce3+ did not change the emission wavelengths, only the relative intensities. Due to partial good energy overlap when 2F7/2 Ce3+ manifold is populated, raising Ce3+ ions concentration enhanced the red UC emission versus green UC emission but also lead to significant decrease in the average lifetimes of all monitored emissions for Ho3+ and Er3+. These lifetime decreases are explained by the energy loss in non-radiative pathways after the introduction of Ce3+. In addition, the green to yellow color emission change through addition of Ce3+ was explored in NaBiF4: Yb3+,Ho3+,Ce3+ to propose a novel application in two-level anti-counterfeiting.


October, 2022 | DOI: 10.1016/j.omx.2022.100199

Reactividad de Sólidos

Highly efficient electrical discharge machining of yttria-stabilized zirconia ceramics with graphene nanostructures as fillers

Muñoz-Ferreiro, C; Lopez-Pernia, C; Moriche, R; Gommeringer, A; Kern, F; Poyato, R; Gallardo-Lopez, A
Journal of the European Ceramic Society, 42 (2022) 5943-5952

Electrical-discharge machining (EDM) of advanced ceramics allows the miniaturization of parts with complex shapes. Since electrical conductivity is required, non-conductive ceramics need a conductive second phase. This work assesses the feasibility of industrial EDM in advanced yttria-stabilized tetragonal zirconia (3YTZP) composites with 20 vol% graphene nanostructures with different morphology using different EDM energies. The structural integrity of the graphene nanostructures, the roughness of the machined surfaces and the geometrical tolerances have been evaluated by Raman spectroscopy, confocal microscopy and scanning electron microscopy, showing that it is possible to obtain a stable and efficient EDM process in these composites using low electrode energies. The use of the largest and thickest graphene nanostructures led to the best performance in terms of EDM machinability, the smallest nanostructures produced the best surface finish for low electrode energy and the thinnest nanostructures allowed the highest material removal rate at medium energy in the composites.


October, 2022 | DOI: 10.1016/j.jeurceramsoc.2022.06.037

Reactividad de Sólidos

Comparative study of alkali activated cements based on metallurgical slags, in terms of technological properties developed

Gomez-Casero, MA; Perez-Villarejo, L; Sanchez-Soto, PJ; Eliche-Quesada, D
Sustainable Chemistry and Pharmacy, 29 (2022) 100746

 

In this work, an investigation on the use of two slags from different origins (electric arc furnace slag (EAFS) and copper slag (CS)) as raw materials in the manufacture of alkali-activated cements has been carried out. A comparison of the different mechanical properties developed by the alkaline activation of each raw material has been studied. Combination of 35 wt% potassium hydroxide (KOH) solution with different concentration (5, 8, 12 and 15 M) and 65 wt% potassium silicate (K2SiO3) solution was used as activating solution to manufacture alkali activated cements. The pastes were cured 24 h in a climatic chamber at 20 ºC at 90% of relative humidity, subsequently demoulded and cured at same condition during 1, 7, 28 and 90 days. Alkali activated materials have been characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The physical properties: bulk density, water absorption and apparent porosity, mechanical properties, flexural strength and compressive strength and thermal properties: thermal conductivity have been determined. The results indicate that two types of slags studied are a suitable source of aluminosilicates that can be activated for the manufacture of alkali-activated materials. These precursors are capable of developing high values of flexural and compressive strength and low values of thermal conductivity when optimal concentration of KOH was used. The optimal composition was developed when CS was utilized. Binders with CS and 12 M M ratio achieved compressive strength values up to 70 MPa.


October, 2022 | DOI: 10.1016/j.scp.2022.100746

Nanotecnología en Superficies y Plasma

Design and Characterization of ITO-Covered Resonant Nanopillars for Dual Optical and Electrochemical Sensing

Tramarin, L; Casquel, R; Gil-Rostra, J; Gonzalez-Martinez, MA; Herrero-Labrador, R; Murillo, AMM; Laguna, MF; Banuls, MJ; Gonzalez-Elipe, AR; Holgado, M
Chemosensors, 10 (2022) 393

In this work we present a dual optical and electrochemical sensor based on SiO2/Si3N4 resonant nanopillars covered with an indium tin oxide (ITO) thin film. A 25-30 nm thick ITO layer deposited by magnetron sputtering acts as an electrode when incorporated onto the nanostructured array, without compromising the optical sensing capability of the nanopillars. Bulk sensing performances before and after ITO deposition have been measured and compared in accordance with theoretical calculations. The electrochemical activity has been determined by the ferri/ferrocyanide redox reaction, showing a remarkably higher activity than that of flat thin films of similar ITO nominal thickness, and proving that the nanopillar system covered by ITO presents electrical continuity. A label-free optical biological detection has been performed, where the presence of amyloid-beta has been detected through an immunoassay enhanced with gold nanoparticles. Again, the experimental results have been corroborated by theoretical simulations. We have demonstrated that ITO can be a beneficial component for resonant nanopillars sensors by adding potential electrochemical sensing capabilities, without significantly altering their optical properties. We foresee that resonant nanopillars coated with a continuous ITO film could be used for simultaneous optical and electrochemical biosensing, improving the robustness of biomolecular identification.


October, 2022 | DOI: 10.3390/chemosensors10100393

Materiales para Bioingeniería y Regeneración Tisular

Sol-Gel Synthesis of Endodontic Cements: Post-Synthesis Treatment to Improve Setting Performance and Bioactivity

Song, X; Diaz-Cuenca, A
Materials, 15 (2022) 6051

The sol-gel process is a wet chemical technique that allows very fine control of the composition, microstructure, and final textural properties of materials, and has great potential for the synthesis of endodontic cements with improved properties. In this work, the influence of different sol-gel synthesis variables on the preparation of endodontic cement based on calcium silicate with Ca/Si stoichiometry equal to 3 was studied. Starting from the most optimal hydraulic composition selected, a novel second post-synthesis treatment using ethanol was essayed. The effects of the tested variables were analyzed by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption, and Gillmore needles to determine the setting time and simulated body fluid (SBF) immersion to measure the bioactive response in vitro. The results indicated that the sol-gel technique is effective in obtaining bioactive endodontic cements (BECs) with high content of the hydraulic compound tricalcium silicate (C3S) in its triclinic polymorph. The implementation of a novel post-synthesis treatment at room temperature using ethanol allows obtaining a final BEC product with a finer particle size and a higher CaCO3 content, which results in an improved material in terms of setting time and bioactive response.


September, 2022 | DOI: 10.3390/ma15176051

Tribología y Protección de Superficies

Influence of the carbon incorporation on the mechanical properties of TiB2 thin films prepared by HiPIMS

Sala, N; Abad, MD; Sanchez-Lopez, JC; Crugeira, F; Ramos-Masana, A; Colominas, C
International Journal of Refractory Metals & Hard Materials, 107 (2022) 105884

Nanostructured TiB2 and TiBC thin films with carbon contents up to 11 at. % were prepared by physical vapor deposition using high power impulse magnetron sputtering (HiPIMS) technology. The influence of carbon incorporation during the deposition of TiB2 coatings was investigated on the chemical composition, microstructure and mechanical properties by means of scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), nanoindentation, scratch test, calotest and adhesion Daimler-Benz test. The results indicated that small additions of carbon up to 3 at. % improved the mechanical behavior and increased the adhesion of the TiB2 thin films. Hardnesses up to 37 GPa were reached and the adhesion of the coating to AISI D2 steel substrates increased from 11 to 18 N. XRD and XPS results showed that the carbon atoms are either occupying interstitial sites within the hexagonal structure of the TiB2 or forming bonds with titanium and boron atoms. The preferred orientation of the films determined by XRD also changed with the increasing carbon content in the (001) crystalline plane.


September, 2022 | DOI: 10.1016/j.ijrmhm.2022.105884

Nanotecnología en Superficies y Plasma

Multiscale Kinetic Monte Carlo Simulation of Self-Organized Growth of GaN/AlN Quantum Dots

Budagosky, JA; García-Cristobal, A
Nanomaterials, 12 (2022) 3052

A three-dimensional kinetic Monte Carlo methodology is developed to study the strained epitaxial growth of wurtzite GaN/AlN quantum dots. It describes the kinetics of effective GaN adatoms on an hexagonal lattice. The elastic strain energy is evaluated by a purposely devised procedure: first, we take advantage of the fact that the deformation in a lattice-mismatched heterostructure is equivalent to that obtained by assuming that one of the regions of the system is subjected to a properly chosen uniform stress (Eshelby inclusion concept), and then the strain is obtained by applying the Green's function method. The standard Monte Carlo method has been modified to implement a multiscale algorithm that allows the isolated adatoms to perform long diffusion jumps. With these state-of-the art modifications, it is possible to perform efficiently simulations over large areas and long elapsed times. We have taylored the model to the conditions of molecular beam epitaxy under N-rich conditions. The corresponding simulations reproduce the different stages of the Stranski-Krastanov transition, showing quantitative agreement with the experimental findings concerning the critical deposition, and island size and density. The influence of growth parameters, such as the relative fluxes of Ga and N and the substrate temperature, is also studied and found to be consistent with the experimental observations. In addition, the growth of stacked layers of quantum dots is also simulated and the conditions for their vertical alignment and homogenization are illustrated. In summary, the developed methodology allows one to reproduce the main features of the self-organized quantum dot growth and to understand the microscopic mechanisms at play.


September, 2022 | DOI: 10.3390/nano12173052

 

 

 

 

 

icms